Simultaneous minimization of total completion time and total deviation of job completion times
This paper addresses a single-machine scheduling problem with the objective of minimizing a linear combination of total job completion times and total deviation of job completion times from a common due-date. The due-date is assumed to be non-restrictive, i.e., sufficiently large to have no impact o...
Gespeichert in:
| Veröffentlicht in: | European journal of operational research Jg. 157; H. 2; S. 296 - 306 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Amsterdam
Elsevier B.V
01.09.2004
Elsevier Elsevier Sequoia S.A |
| Schriftenreihe: | European Journal of Operational Research |
| Schlagworte: | |
| ISSN: | 0377-2217, 1872-6860 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | This paper addresses a single-machine scheduling problem with the objective of minimizing a linear combination of total job completion times and total deviation of job completion times from a common due-date. The due-date is assumed to be non-restrictive, i.e., sufficiently large to have no impact on the optimal sequence. When the weights are job-independent, the problem is shown to have a polynomial time solution, and the optimal schedule is fully characterized as a function of the different parameters. When job-dependent weights are assumed, the problem is known to be NP-hard. We introduce a pseudo-polynomial dynamic programming algorithm, indicating that this case is NP-hard in the ordinary sense. The algorithm is shown experimentally to perform extremely well when tested on high-multiplicity instances with up to 1000 jobs. |
|---|---|
| Bibliographie: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
| ISSN: | 0377-2217 1872-6860 |
| DOI: | 10.1016/S0377-2217(03)00193-0 |