Normal cerebral perfusion measurements using arterial spin labeling: Reproducibility, stability, and age and gender effects

Before meaningful conclusions can be drawn from clinical measures of cerebral blood perfusion, the precision of the measurement must be determined and set in the context of inter‐ and intrasubject sources of variability. This work establishes the reproducibility of perfusion measurements using the n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in medicine Jg. 51; H. 4; S. 736 - 743
Hauptverfasser: Parkes, Laura M., Rashid, Waqar, Chard, Declan T., Tofts, Paul S.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.04.2004
Schlagworte:
ISSN:0740-3194, 1522-2594
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Before meaningful conclusions can be drawn from clinical measures of cerebral blood perfusion, the precision of the measurement must be determined and set in the context of inter‐ and intrasubject sources of variability. This work establishes the reproducibility of perfusion measurements using the noninvasive MRI technique of continuous arterial spin labeling (CASL). Perfusion was measured in 34 healthy normal subjects. Intersubject variability was assessed, and age and gender contributions were estimated. Intersubject variation was found to be large, with up to 100% perfusion difference for subjects of the same age and gender. Repeated measurements in one subject showed that perfusion remains remarkably stable in the short term when compared with intersubject variation and the large capacity for perfusion change in the brain. A significant decrease in the ratio of gray‐matter to white‐matter perfusion was found with increasing age (0.79% per year (P < 0.0005)). This appears to be due mainly to a reduction in gray‐matter perfusion, which was found to decrease by 0.45% per year (P = 0.04). Regional analysis suggested that the gray‐matter age‐related changes were predominantly localized in the frontal cortex. Whole‐brain perfusion was 13% higher (P = 0.02) in females compared to males. Magn Reson Med 51:736–743, 2004. © 2004 Wiley‐Liss, Inc.
AbstractList Before meaningful conclusions can be drawn from clinical measures of cerebral blood perfusion, the precision of the measurement must be determined and set in the context of inter- and intrasubject sources of variability. This work establishes the reproducibility of perfusion measurements using the noninvasive MRI technique of continuous arterial spin labeling (CASL). Perfusion was measured in 34 healthy normal subjects. Intersubject variability was assessed, and age and gender contributions were estimated. Intersubject variation was found to be large, with up to 100% perfusion difference for subjects of the same age and gender. Repeated measurements in one subject showed that perfusion remains remarkably stable in the short term when compared with intersubject variation and the large capacity for perfusion change in the brain. A significant decrease in the ratio of gray-matter to white-matter perfusion was found with increasing age (0.79% per year (P < 0.0005)). This appears to be due mainly to a reduction in gray-matter perfusion, which was found to decrease by 0.45% per year (P = 0.04). Regional analysis suggested that the gray-matter age-related changes were predominantly localized in the frontal cortex. Whole-brain perfusion was 13% higher (P = 0.02) in females compared to males.Before meaningful conclusions can be drawn from clinical measures of cerebral blood perfusion, the precision of the measurement must be determined and set in the context of inter- and intrasubject sources of variability. This work establishes the reproducibility of perfusion measurements using the noninvasive MRI technique of continuous arterial spin labeling (CASL). Perfusion was measured in 34 healthy normal subjects. Intersubject variability was assessed, and age and gender contributions were estimated. Intersubject variation was found to be large, with up to 100% perfusion difference for subjects of the same age and gender. Repeated measurements in one subject showed that perfusion remains remarkably stable in the short term when compared with intersubject variation and the large capacity for perfusion change in the brain. A significant decrease in the ratio of gray-matter to white-matter perfusion was found with increasing age (0.79% per year (P < 0.0005)). This appears to be due mainly to a reduction in gray-matter perfusion, which was found to decrease by 0.45% per year (P = 0.04). Regional analysis suggested that the gray-matter age-related changes were predominantly localized in the frontal cortex. Whole-brain perfusion was 13% higher (P = 0.02) in females compared to males.
Before meaningful conclusions can be drawn from clinical measures of cerebral blood perfusion, the precision of the measurement must be determined and set in the context of inter‐ and intrasubject sources of variability. This work establishes the reproducibility of perfusion measurements using the noninvasive MRI technique of continuous arterial spin labeling (CASL). Perfusion was measured in 34 healthy normal subjects. Intersubject variability was assessed, and age and gender contributions were estimated. Intersubject variation was found to be large, with up to 100% perfusion difference for subjects of the same age and gender. Repeated measurements in one subject showed that perfusion remains remarkably stable in the short term when compared with intersubject variation and the large capacity for perfusion change in the brain. A significant decrease in the ratio of gray‐matter to white‐matter perfusion was found with increasing age (0.79% per year (P < 0.0005)). This appears to be due mainly to a reduction in gray‐matter perfusion, which was found to decrease by 0.45% per year (P = 0.04). Regional analysis suggested that the gray‐matter age‐related changes were predominantly localized in the frontal cortex. Whole‐brain perfusion was 13% higher (P = 0.02) in females compared to males. Magn Reson Med 51:736–743, 2004. © 2004 Wiley‐Liss, Inc.
Before meaningful conclusions can be drawn from clinical measures of cerebral blood perfusion, the precision of the measurement must be determined and set in the context of inter- and intrasubject sources of variability. This work establishes the reproducibility of perfusion measurements using the noninvasive MRI technique of continuous arterial spin labeling (CASL). Perfusion was measured in 34 healthy normal subjects. Intersubject variability was assessed, and age and gender contributions were estimated. Intersubject variation was found to be large, with up to 100% perfusion difference for subjects of the same age and gender. Repeated measurements in one subject showed that perfusion remains remarkably stable in the short term when compared with intersubject variation and the large capacity for perfusion change in the brain. A significant decrease in the ratio of gray-matter to white-matter perfusion was found with increasing age (0.79% per year (P < 0.0005)). This appears to be due mainly to a reduction in gray-matter perfusion, which was found to decrease by 0.45% per year (P = 0.04). Regional analysis suggested that the gray-matter age-related changes were predominantly localized in the frontal cortex. Whole-brain perfusion was 13% higher (P = 0.02) in females compared to males.
Before meaningful conclusions can be drawn from clinical measures of cerebral blood perfusion, the precision of the measurement must be determined and set in the context of inter‐ and intrasubject sources of variability. This work establishes the reproducibility of perfusion measurements using the noninvasive MRI technique of continuous arterial spin labeling (CASL). Perfusion was measured in 34 healthy normal subjects. Intersubject variability was assessed, and age and gender contributions were estimated. Intersubject variation was found to be large, with up to 100% perfusion difference for subjects of the same age and gender. Repeated measurements in one subject showed that perfusion remains remarkably stable in the short term when compared with intersubject variation and the large capacity for perfusion change in the brain. A significant decrease in the ratio of gray‐matter to white‐matter perfusion was found with increasing age (0.79% per year ( P < 0.0005)). This appears to be due mainly to a reduction in gray‐matter perfusion, which was found to decrease by 0.45% per year ( P = 0.04). Regional analysis suggested that the gray‐matter age‐related changes were predominantly localized in the frontal cortex. Whole‐brain perfusion was 13% higher ( P = 0.02) in females compared to males. Magn Reson Med 51:736–743, 2004. © 2004 Wiley‐Liss, Inc.
Author Parkes, Laura M.
Rashid, Waqar
Chard, Declan T.
Tofts, Paul S.
Author_xml – sequence: 1
  givenname: Laura M.
  surname: Parkes
  fullname: Parkes, Laura M.
  email: laura.parkes@fcdonders.kun.nl
  organization: NMR Research Unit, Department of Neuroinflammation, Institute of Neurology, University College London, London, UK
– sequence: 2
  givenname: Waqar
  surname: Rashid
  fullname: Rashid, Waqar
  organization: NMR Research Unit, Department of Neuroinflammation, Institute of Neurology, University College London, London, UK
– sequence: 3
  givenname: Declan T.
  surname: Chard
  fullname: Chard, Declan T.
  organization: NMR Research Unit, Department of Neuroinflammation, Institute of Neurology, University College London, London, UK
– sequence: 4
  givenname: Paul S.
  surname: Tofts
  fullname: Tofts, Paul S.
  organization: NMR Research Unit, Department of Neuroinflammation, Institute of Neurology, University College London, London, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15065246$$D View this record in MEDLINE/PubMed
BookMark eNqFkV9rFDEUxYNU7Lb64BeQeRKETptkksnEN6ltVdoVloK-hTuZmyU6f9Ykgy5-eWO3qyCoT-dw-Z3L5Z4jcjBOIxLylNFTRik_G8JwyrOpHpAFk5yXXGpxQBZUCVpWTItDchTjJ0qp1ko8IodM0lpyUS_I9-UUBugLiwHbkM0Gg5ujn8ZiQIhzwAHHFIs8GtcFhITBZypu_Fj00GKfxy-LFW7C1M3Wt773aXtSxAR7C2NXwBrvdI1jh6FA59Cm-Jg8dNBHfHKvx-T28uL2_E15_f7q7fmr69IKWVelbQCYtl2jdL4awNXcMtfWrm6F1LJWoqG1cCihpQ1wqtqKaypY1TXMMl4dk-e7tfnGLzPGZAYfLfY9jDjN0SimdNM08r8gUw3XkqkMPrsH53bAzmyCHyBszf6tGXixA2yYYgzofiPU_KzM5MrMXWWZPfuDtT5Byg2kAL7_V-Kr73H799XmZnWzT5S7hI8Jv_1KQPhsalUpaT4srwxfLdXHd6vX5rL6Acm7t6c
CitedBy_id crossref_primary_10_1002_jmri_24920
crossref_primary_10_1002_jmri_24246
crossref_primary_10_1007_s00234_015_1497_5
crossref_primary_10_1007_s00330_018_5353_y
crossref_primary_10_1038_jcbfm_2015_14
crossref_primary_10_3389_fnagi_2018_00270
crossref_primary_10_1016_j_neuroimage_2005_12_007
crossref_primary_10_3389_fphys_2022_934731
crossref_primary_10_1002_brb3_2126
crossref_primary_10_1016_j_jneumeth_2015_02_017
crossref_primary_10_1186_s40478_023_01700_z
crossref_primary_10_1002_jmri_20329
crossref_primary_10_1016_j_neuroimage_2013_03_068
crossref_primary_10_1007_s11357_024_01288_9
crossref_primary_10_1002_jmri_28967
crossref_primary_10_1002_mrm_21670
crossref_primary_10_1002_mrm_28988
crossref_primary_10_1016_j_brs_2021_02_011
crossref_primary_10_1148_radiol_10091224
crossref_primary_10_1016_j_neuroimage_2021_117741
crossref_primary_10_1371_journal_pone_0091251
crossref_primary_10_1016_j_neuroimage_2024_120506
crossref_primary_10_1016_j_neuroimage_2010_08_043
crossref_primary_10_1016_j_nicl_2013_11_003
crossref_primary_10_1093_cercor_bhac057
crossref_primary_10_1002_mrm_21317
crossref_primary_10_1089_neu_2020_7272
crossref_primary_10_1016_j_mri_2011_02_030
crossref_primary_10_1016_j_neuroimage_2010_12_032
crossref_primary_10_1038_s41598_022_22599_x
crossref_primary_10_1002_mrm_30376
crossref_primary_10_1148_radiol_2512081548
crossref_primary_10_1016_j_neuroimage_2022_119512
crossref_primary_10_1002_nbm_4202
crossref_primary_10_1111_j_1552_6569_2008_00277_x
crossref_primary_10_3390_brainsci14100983
crossref_primary_10_1002_mrm_23286
crossref_primary_10_1177_0271678X231153741
crossref_primary_10_1371_journal_pone_0163071
crossref_primary_10_1007_s11682_024_00914_6
crossref_primary_10_3390_nu10050530
crossref_primary_10_2460_ajvr_77_11_1227
crossref_primary_10_1093_eurheartj_ehac061
crossref_primary_10_1111_j_1469_8986_2011_01331_x
crossref_primary_10_1002_mrm_21420
crossref_primary_10_1371_journal_pone_0223584
crossref_primary_10_1002_ana_27135
crossref_primary_10_1038_s41598_025_05406_1
crossref_primary_10_1371_journal_pone_0135827
crossref_primary_10_3389_fgwh_2025_1531062
crossref_primary_10_1002_jmri_21794
crossref_primary_10_1182_blood_2005_10_4029
crossref_primary_10_1016_j_neuroimage_2023_120251
crossref_primary_10_1113_JP279453
crossref_primary_10_1053_j_jvca_2005_12_015
crossref_primary_10_1155_2022_8484977
crossref_primary_10_1158_0008_5472_CAN_24_0401
crossref_primary_10_1002_mrm_24601
crossref_primary_10_1016_j_biopsych_2016_04_021
crossref_primary_10_1016_j_neuroimage_2011_07_092
crossref_primary_10_1038_sj_jcbfm_9600570
crossref_primary_10_1038_jcbfm_2013_147
crossref_primary_10_1016_j_neuroimage_2010_03_008
crossref_primary_10_3389_fnagi_2020_00245
crossref_primary_10_3233_JAD_230553
crossref_primary_10_3390_cancers14194734
crossref_primary_10_1016_j_neurobiolaging_2011_09_032
crossref_primary_10_1007_s11095_022_03281_3
crossref_primary_10_1080_17482960802411740
crossref_primary_10_1016_S1001_9294_14_60069_9
crossref_primary_10_1016_j_jshs_2020_01_004
crossref_primary_10_1177_1971400919834693
crossref_primary_10_1161_STROKEAHA_121_035674
crossref_primary_10_1002_mrm_28195
crossref_primary_10_1177_1352458512441984
crossref_primary_10_1002_jmri_20456
crossref_primary_10_1002_jmri_22878
crossref_primary_10_1007_s00429_016_1362_2
crossref_primary_10_1007_s11065_020_09451_7
crossref_primary_10_1016_j_neubiorev_2016_11_023
crossref_primary_10_1161_01_STR_0000177884_72657_8b
crossref_primary_10_1016_j_nicl_2025_103746
crossref_primary_10_1002_hbm_70328
crossref_primary_10_3348_kjr_2020_0716
crossref_primary_10_3390_jcm8071015
crossref_primary_10_1002_jmri_24493
crossref_primary_10_3389_fneur_2023_1240300
crossref_primary_10_1007_s11064_012_0854_6
crossref_primary_10_1097_RMR_0b013e31821e570a
crossref_primary_10_1016_j_irbm_2015_01_016
crossref_primary_10_1111_jsr_14190
crossref_primary_10_1016_j_neubiorev_2021_07_003
crossref_primary_10_1111_jon_12757
crossref_primary_10_1002_jmri_27438
crossref_primary_10_1016_j_mri_2013_04_010
crossref_primary_10_1007_s00330_019_06096_w
crossref_primary_10_1017_S135561771700087X
crossref_primary_10_1007_s11910_005_0049_5
crossref_primary_10_1016_j_neurobiolaging_2021_04_008
crossref_primary_10_1002_mrm_23093
crossref_primary_10_1002_mrm_28661
crossref_primary_10_1007_s00234_015_1571_z
crossref_primary_10_1038_s41398_024_02961_5
crossref_primary_10_1002_jmri_22788
crossref_primary_10_1109_TMI_2015_2395257
crossref_primary_10_1016_j_ultrasmedbio_2018_06_016
crossref_primary_10_1080_0361073X_2021_1929748
crossref_primary_10_1161_STROKEAHA_120_032941
crossref_primary_10_1007_s40262_018_0709_7
crossref_primary_10_1097_RMR_0b013e3181808140
crossref_primary_10_1016_j_resp_2007_10_010
crossref_primary_10_1002_mrm_24984
crossref_primary_10_1038_s41380_023_02217_6
crossref_primary_10_3389_fnagi_2021_734992
crossref_primary_10_1038_s41598_018_20162_1
crossref_primary_10_1016_j_neuroimage_2021_118472
crossref_primary_10_1177_0300060518779716
crossref_primary_10_3389_fnagi_2022_803332
crossref_primary_10_1161_HYPERTENSIONAHA_118_11143
crossref_primary_10_1007_s00234_022_02910_3
crossref_primary_10_1002_jmri_25367
crossref_primary_10_1016_j_jneumeth_2018_08_018
crossref_primary_10_1016_j_neuropsychologia_2017_11_011
crossref_primary_10_1007_s11682_021_00588_4
crossref_primary_10_1016_j_neuroimage_2018_09_060
crossref_primary_10_1002_jmri_28874
crossref_primary_10_1371_journal_pone_0014801
crossref_primary_10_1186_1532_429X_15_70
crossref_primary_10_1016_j_neurobiolaging_2016_11_004
crossref_primary_10_1667_RADE_21_00143_1
crossref_primary_10_1007_s11682_019_00157_w
crossref_primary_10_1002_hbm_20288
crossref_primary_10_1038_jcbfm_2012_58
crossref_primary_10_1073_pnas_2310044121
crossref_primary_10_1152_japplphysiol_00436_2024
crossref_primary_10_1016_S0150_9861_05_83159_1
crossref_primary_10_1016_j_eplepsyres_2008_08_001
crossref_primary_10_1016_j_drugalcdep_2008_06_007
crossref_primary_10_3109_17482968_2011_625569
crossref_primary_10_3389_fnut_2017_00032
crossref_primary_10_1177_1971400920943967
crossref_primary_10_1016_j_exger_2022_111903
crossref_primary_10_1002_hbm_22142
crossref_primary_10_1124_jpet_110_172577
crossref_primary_10_1007_s00247_022_05344_4
crossref_primary_10_1016_j_neuroimage_2013_03_003
crossref_primary_10_1002_mrm_22465
crossref_primary_10_1371_journal_pone_0164112
crossref_primary_10_1002_mrm_20604
crossref_primary_10_1148_radiol_2451061493
crossref_primary_10_1038_npp_2017_113
crossref_primary_10_1016_j_ejmp_2022_10_013
crossref_primary_10_1016_j_pscychresns_2010_02_010
crossref_primary_10_1111_adb_12705
crossref_primary_10_1371_journal_pone_0144743
crossref_primary_10_1016_j_neuroimage_2021_117807
crossref_primary_10_1002_hipo_23327
crossref_primary_10_1016_j_jvir_2012_07_010
crossref_primary_10_1007_s11065_014_9264_7
crossref_primary_10_1111_pedi_13313
crossref_primary_10_1148_radiol_2462061775
crossref_primary_10_7554_eLife_96155
crossref_primary_10_1002_mrm_28559
crossref_primary_10_1371_journal_pone_0174932
crossref_primary_10_1016_j_nicl_2025_103828
crossref_primary_10_1259_bjr_74316620
crossref_primary_10_3233_JAD_161266
crossref_primary_10_1038_jcbfm_2014_17
crossref_primary_10_1016_j_neurobiolaging_2021_08_014
crossref_primary_10_1007_s00117_010_2093_7
crossref_primary_10_1038_s41597_025_05406_w
crossref_primary_10_1093_schbul_sbx051
crossref_primary_10_1002_jmri_22345
crossref_primary_10_1177_0271678X19855875
crossref_primary_10_1002_nbm_4852
crossref_primary_10_1002_nbm_1462
crossref_primary_10_1016_j_mric_2021_06_002
crossref_primary_10_1002_jmri_24648
crossref_primary_10_1002_mp_15468
crossref_primary_10_1016_j_neuroimage_2009_07_068
crossref_primary_10_1177_0271678X16636393
crossref_primary_10_3233_JAD_201165
crossref_primary_10_1212_WNL_0b013e318233b229
crossref_primary_10_1177_0271678X16668536
crossref_primary_10_1002_jmri_20839
crossref_primary_10_1038_jcbfm_2010_89
crossref_primary_10_1002_hbm_24613
crossref_primary_10_3390_brainsci11040491
crossref_primary_10_1111_j_1530_0277_2011_01435_x
crossref_primary_10_1016_j_pcad_2007_01_001
crossref_primary_10_1088_0031_9155_61_15_5587
crossref_primary_10_1097_WCO_0000000000000346
crossref_primary_10_3389_fnagi_2014_00059
crossref_primary_10_1017_S0033291722002288
crossref_primary_10_1093_cercor_bhq090
crossref_primary_10_1007_s10548_012_0265_7
crossref_primary_10_1038_s41386_024_01943_x
crossref_primary_10_15857_ksep_2023_00255
crossref_primary_10_1002_nbm_1210
crossref_primary_10_1007_s10334_007_0073_3
crossref_primary_10_1016_j_nrleng_2017_06_001
crossref_primary_10_1016_j_bbadis_2011_09_008
crossref_primary_10_1148_radiol_12111509
crossref_primary_10_1007_s00247_018_4232_7
crossref_primary_10_1177_0271678X18797343
crossref_primary_10_1097_HJH_0000000000002709
crossref_primary_10_1136_bmjopen_2017_018160
crossref_primary_10_1002_hup_1263
crossref_primary_10_1007_s11682_010_9108_x
crossref_primary_10_1016_j_mri_2015_11_002
crossref_primary_10_1503_jpn_170150
crossref_primary_10_1016_j_heliyon_2022_e12364
crossref_primary_10_1007_s00421_019_04118_5
crossref_primary_10_1016_j_neuroimage_2011_04_030
crossref_primary_10_3171_2018_9_FOCUS18369
crossref_primary_10_1002_jmri_20503
crossref_primary_10_1016_j_neuroimage_2017_07_020
crossref_primary_10_1111_psyp_12288
crossref_primary_10_1016_j_neuroimage_2017_05_054
crossref_primary_10_1371_journal_pcbi_1011127
crossref_primary_10_1002_nbm_5009
crossref_primary_10_1038_s41386_024_01800_x
crossref_primary_10_1002_hbm_20719
crossref_primary_10_1016_j_neuroimage_2019_01_035
crossref_primary_10_1016_j_neurobiolaging_2007_11_012
crossref_primary_10_1038_jcbfm_2013_17
crossref_primary_10_1371_journal_pone_0133717
crossref_primary_10_1016_j_biocel_2017_05_005
crossref_primary_10_1016_j_neuropsychologia_2013_06_025
crossref_primary_10_1523_JNEUROSCI_2966_07_2007
crossref_primary_10_1002_jmri_24891
crossref_primary_10_1152_japplphysiol_90349_2008
crossref_primary_10_1212_WNL_0b013e3181b59a97
crossref_primary_10_1016_j_brainres_2009_12_020
crossref_primary_10_1016_j_alcohol_2011_04_002
crossref_primary_10_1186_s12887_019_1876_x
crossref_primary_10_1016_j_mri_2010_05_002
crossref_primary_10_1016_j_clineuro_2021_107102
crossref_primary_10_1017_S0033291716000702
crossref_primary_10_1002_mrm_25525
crossref_primary_10_1177_19714009211002778
crossref_primary_10_1002_mrm_22256
crossref_primary_10_1016_j_pnpbp_2017_09_018
crossref_primary_10_1038_jcbfm_2009_256
crossref_primary_10_1038_jcbfm_2012_180
crossref_primary_10_1002_jmri_20761
crossref_primary_10_7554_eLife_96155_3
crossref_primary_10_1002_art_37685
crossref_primary_10_1016_j_clon_2023_09_015
crossref_primary_10_1016_j_biopsych_2013_02_026
crossref_primary_10_1016_j_neubiorev_2017_02_004
crossref_primary_10_1016_j_cortex_2016_11_002
crossref_primary_10_1038_jcbfm_2011_10
crossref_primary_10_1158_0008_5472_CAN_21_2794
crossref_primary_10_1371_journal_pone_0197055
crossref_primary_10_1371_journal_pone_0276912
crossref_primary_10_1371_journal_pone_0104108
crossref_primary_10_1016_j_clinimag_2011_11_003
crossref_primary_10_1371_journal_pone_0132929
crossref_primary_10_1002_hbm_20574
crossref_primary_10_1161_STROKEAHA_119_026499
crossref_primary_10_1016_j_biopsycho_2011_10_006
crossref_primary_10_1007_s12975_021_00983_5
crossref_primary_10_1038_jcbfm_2014_163
crossref_primary_10_1111_ene_14534
crossref_primary_10_1016_j_neuroimage_2023_120167
crossref_primary_10_1016_j_neuroimage_2025_121098
crossref_primary_10_1016_j_mri_2010_03_037
crossref_primary_10_1007_s00234_016_1713_y
crossref_primary_10_1002_jmri_24559
crossref_primary_10_1111_epi_17831
crossref_primary_10_1002_hbm_21418
crossref_primary_10_1002_mrm_28932
crossref_primary_10_1016_j_neulet_2013_12_011
crossref_primary_10_1016_j_nurt_2007_04_005
crossref_primary_10_1016_j_neuroimage_2019_01_004
crossref_primary_10_1016_j_neuroimage_2023_120039
crossref_primary_10_3389_fneur_2018_00110
crossref_primary_10_1016_j_mri_2018_06_020
crossref_primary_10_1177_0271678X17702156
crossref_primary_10_3389_fnagi_2018_00214
crossref_primary_10_1007_s10334_016_0567_y
crossref_primary_10_1016_j_clineuro_2020_105908
crossref_primary_10_1016_j_neurad_2018_06_003
crossref_primary_10_3389_fneur_2017_00280
crossref_primary_10_1007_s10439_021_02808_w
crossref_primary_10_1007_s11042_014_2395_2
crossref_primary_10_3233_JAD_200296
crossref_primary_10_3389_fneur_2021_633500
crossref_primary_10_3389_fnins_2021_711898
crossref_primary_10_1002_mrm_20443
crossref_primary_10_1136_bmjopen_2018_025219
crossref_primary_10_1002_mrm_20440
crossref_primary_10_1002_mrm_25333
crossref_primary_10_1016_j_neuroimage_2020_117246
crossref_primary_10_3389_fnagi_2016_00151
crossref_primary_10_1016_j_pscychresns_2015_03_007
crossref_primary_10_1148_rg_335125212
crossref_primary_10_1016_j_nic_2005_09_011
crossref_primary_10_1038_srep43246
crossref_primary_10_3389_fnagi_2014_00159
crossref_primary_10_1002_mrm_21779
crossref_primary_10_1016_j_acra_2010_08_002
crossref_primary_10_1007_s00234_008_0416_4
crossref_primary_10_1016_j_jneumeth_2018_06_009
crossref_primary_10_1155_2012_367516
crossref_primary_10_1016_j_neulet_2008_04_084
crossref_primary_10_1002_hbm_22891
crossref_primary_10_1016_j_nicl_2020_102434
crossref_primary_10_1148_rg_220088
crossref_primary_10_1097_RCT_0b013e318188ad99
crossref_primary_10_1016_j_pscychresns_2011_06_013
crossref_primary_10_1016_j_biopsych_2006_11_028
crossref_primary_10_1016_j_neuroimage_2007_05_024
crossref_primary_10_3390_diagnostics8020041
crossref_primary_10_1016_j_nicl_2021_102853
crossref_primary_10_1016_j_nicl_2013_09_004
crossref_primary_10_1002_jmri_28133
crossref_primary_10_1016_j_mri_2006_11_028
crossref_primary_10_1200_EDBK_25_473324
crossref_primary_10_1002_mrm_22611
crossref_primary_10_1016_j_nic_2012_02_012
crossref_primary_10_1007_s00401_016_1570_0
crossref_primary_10_1186_s12987_024_00603_y
crossref_primary_10_1007_s00429_013_0593_8
crossref_primary_10_1016_j_drudis_2023_103506
crossref_primary_10_3389_fnagi_2018_00115
Cites_doi 10.1002/(SICI)1522-2586(199911)10:5<870::AID-JMRI36>3.0.CO;2-D
10.1002/ana.410210603
10.1161/01.STR.15.4.635
10.1161/01.STR.20.2.183
10.1038/jcbfm.1986.12
10.1073/pnas.89.12.5675
10.1002/mrm.10180
10.1038/jcbfm.1991.121
10.1097/00004647-199810000-00011
10.1016/0021-9681(56)90146-1
10.1159/000115248
10.1016/0165-1781(87)90028-X
10.1002/(SICI)1096-9861(19970728)384:2<312::AID-CNE10>3.0.CO;2-K
10.1016/S0301-0511(00)00059-4
10.1016/S0022-510X(00)00396-8
10.1212/WNL.34.7.855
10.1172/JCI101995
10.1038/jcbfm.1993.95
10.1136/bmj.312.7047.1654
10.1002/mrm.1910340303
10.1016/0022-510X(80)90048-9
10.1161/01.STR.5.5.630
10.1016/0006-8993(79)90349-4
10.1002/1531-8249(200001)47:1<93::AID-ANA15>3.0.CO;2-8
10.1002/hbm.460020402
10.1038/jcbfm.1987.102
10.1148/radiology.208.2.9680569
10.1126/science.278.5337.412
10.1093/brain/113.1.27
10.1002/ana.410170103
10.1001/archneur.1979.00500430040005
10.1161/01.STR.9.3.195
10.1161/01.STR.17.6.1220
10.1002/mrm.10140
ContentType Journal Article
Copyright Copyright © 2004 Wiley‐Liss, Inc.
Copyright 2004 Wiley-Liss, Inc.
Copyright_xml – notice: Copyright © 2004 Wiley‐Liss, Inc.
– notice: Copyright 2004 Wiley-Liss, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
P64
7X8
DOI 10.1002/mrm.20023
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Engineering Research Database
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 743
ExternalDocumentID 15065246
10_1002_mrm_20023
MRM20023
ark_67375_WNG_2RN7XJRD_F
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
GrantInformation_xml – fundername: Schering AG
– fundername: Brain Research Trust UK
– fundername: MS Society of Great Britain and Northern Ireland
– fundername: Multiple Sclerosis Society
  grantid: 748
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIACR
AIAGR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
24P
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RGB
RWI
WRC
WUP
AAYXX
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
P64
7X8
ID FETCH-LOGICAL-c4563-c8aa19cd879065aaf62c1fb6f6b45956748064fe5ab08a207b3290413d81c123
IEDL.DBID DRFUL
ISICitedReferencesCount 386
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000220557200012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0740-3194
IngestDate Fri Sep 05 11:26:39 EDT 2025
Mon Oct 06 18:02:27 EDT 2025
Fri May 30 10:50:39 EDT 2025
Sat Nov 29 06:27:10 EST 2025
Tue Nov 18 21:28:03 EST 2025
Wed Jan 22 17:07:10 EST 2025
Sun Sep 21 06:20:59 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Copyright 2004 Wiley-Liss, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4563-c8aa19cd879065aaf62c1fb6f6b45956748064fe5ab08a207b3290413d81c123
Notes ark:/67375/WNG-2RN7XJRD-F
Schering AG
istex:C9768B46CE80DF6CFF62828670FC16C8BD8E0841
MS Society of Great Britain and Northern Ireland
Brain Research Trust UK
ArticleID:MRM20023
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PMID 15065246
PQID 17829517
PQPubID 23462
PageCount 8
ParticipantIDs proquest_miscellaneous_71798885
proquest_miscellaneous_17829517
pubmed_primary_15065246
crossref_primary_10_1002_mrm_20023
crossref_citationtrail_10_1002_mrm_20023
wiley_primary_10_1002_mrm_20023_MRM20023
istex_primary_ark_67375_WNG_2RN7XJRD_F
PublicationCentury 2000
PublicationDate April 2004
PublicationDateYYYYMMDD 2004-04-01
PublicationDate_xml – month: 04
  year: 2004
  text: April 2004
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn. Reson. Med
PublicationYear 2004
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References Podreka I, Baumgartner C, Suess E, Müller C, Brücke T, Lang W, Holzner F, Steiner M, Deecke L. Quantification of regional cerebral blood flow with IMP-SPECT. Stroke 1989; 20: 183-191.
Alsop DC, Detre JA. Multisection cerebral blood flow MR imaging with continuous arterial spin labelling. Radiology 1998; 208: 410-416.
Morrison JH, Hof PR. Life and death of neurons in the aging brain. Science 1997; 278: 412-419.
Pantano P, Baron J, Lebrun-Grandié P, Duquesnoy N, Bousser M, Comar D. Regional cerebral blood flow and oxygen consumption in human aging. Stroke 1984; 15: 635-641.
Gottstein U, Held K. Effects of aging on cerebral circulation and metabolism in man. Acta Neurol Scand 1979; 72: 54-55.
Leenders KL, Perani D, Lammertsma AA, Heather JD, Buckingham P, Healy MJR, Gibbs JM, Wise RJS, Hatazawa J, Herold S, Beaney RP, Brooks DJ, Spinks T, Rhodes C, Frackowiak RSJ, Jones T. Cerebral blood flow, blood volume and oxygen utilisation. Normal values and effects of age. Brain 1990; 113: 27-47.
Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff RM, Poncelet BP, Kennedy DN, Hoppel BE, Cohen MS, Turner R, Cheng HM, Brady TJ, Rosen BR. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci USA 1992; 89: 5675-5679.
Schreiber WG, Gückel F, Stritzke P, Schmiedek P, Schwartz A, Brix G. Cerebral blood flow and cerebrovascular reserve capacity: estimation by dynamic magnetic resonance imaging. J Cereb Blood Flow Metab 1998; 18: 1143-1156.
Yen YF, Field AS, Martin EM, Ari N, Burdette JH, Moody DM, Takahashi AM. Test-retest reproducibility of quantitative CBF measurements using FAIR perfusion MRI and acetazolamide challenge. Magn Reson Med 2002; 47: 921-928.
Yamaguchi T, Kanno I, Uemura K, Shishido F, Inugami A, Ogawa T, Murakami M, Suzuki K. Reduction in regional cerebral metabolic rate of oxygen during human aging. Stroke 1986; 17: 1220-1228.
Shaw T, Meyer JS, Mortel K, Cutaia M, Sakai F, Yamaguchi F. Effects of normal aging, sex and risk factors for stoke on regional cerebral blood flow (rCBF) in normal volunteers. Acta Neurol Scand 1979; 60: 462-463.
Terry HD, DeTeresa R, Hansen LA. Neocortical cell counts in normal adult aging. Ann Neurol 1987; 21: 530-539.
Kim SG. Quantification of relative blood flow change by flow-sensitive alternating inversion recovery (FAIR) technique: application to functional mapping. Magn Reson Med 1995; 34: 293-301.
Bentourika M, Bol A, Ivanoiu A, Labar D, Sibomana M, Coppens A, Michel C, Cosnard G, De Volder AG. Comparison of regional cerebral blood flow and glucose metabolism in the normal brain: effect of aging. J Neurol Sci 2000; 181: 19-28.
Parkes LM, Tofts PS. Improved accuracy of human cerebral blood perfusion measurements using arterial spin labeling: accounting for capillary water permeability. Magn Reson Med 2002; 48: 27-41.
Devous MD, Stokely EM, Chehabi HH, Bonte FJ. Normal distribution of regional cerebral blood flow measured by dynamic single-photon emission tomography. J Cereb Blood Flow Metab 1986; 6: 95-104.
Kety S. Human cerebral blood flow and oxygen consumption as related to aging. J Chronic Dis 1956; 3: 478-486.
Grady CL. Functional brain imaging and age-related changes in cognition. Biol Psychol 2000; 54: 259-281.
Huttenlocher PR. Synaptic density in human frontal cortex-developmental changes and effects of aging. Brain Res 1979; 163: 195-205.
Alsop DC, Detre JA, Grossman M. Assessment of cerebral blood flow in Alzheimer's disease by spin-labeled magnetic resonance imaging. Ann Neurol 2000; 47: 93-100.
Naritomi H, Meyer JS, Sakai F, Yamaguchi F, Shaw T. Effects of advancing age on regional cerebral blood flow. Arch Neurol 1979; 36: 410-416.
Detre JA, Samuels OB, Alsop DC, Gonzalez-At JB, Kasner SE, Raps EC. Noninvasive magnetic resonance imaging evaluation of cerebral blood flow with acetazolamide challenge in patients with cerebrovascular stenosis. Magn Reson Imaging 1999; 10: 870-875.
Meyer JS, Ishihara N, Deshmukh VD, Naritomi H, Sakai F, Hsu MC, Pollack P. Improved metod for noninvasive measurement of regional blood flow by 133Xenon inhalation. Part I: description of method and normal values obtained in healthy volunteers. Stroke 1978; 9: 195-205.
Pakkenberg B, Gundersen HJG. Neocortical neuron number in humans: effect of sex and age. J Comp Neurol 1997; 384: 312-320.
Shaw T, Mortel K, Meyer J, Rogers R, Hardenberg J, Cutaia M. Cerebral blood flow changes in benign aging and cerebrovascular disease. Neurology 1984; 34: 855-862.
Creasey H, Rapoport SI. The aging human brain. Ann Neurol 1985; 17: 2-10.
Bland JM, Altman DG. Measurement error. BMJ 1996; 312: 1654.
Herscovitch P, Raichle ME, Kilbourn MR, Welch MJ. Positron emission tomographic measurement of cerebral blood flow and permeability-surface area product of water using [15O]water and [11C]butanol. J Cereb Blood Flow Metab 1987; 7: 527-542.
Baxter LR, Mazziotta JC, Phelps ME, Selin CE, Guze BH, Fairbanks L. Cerebral glucose metabolic rates in normal human females versus normal males. Psychol Res 1987; 21: 237-245.
Sokoloff L. Cerebral circulatory and metabolic changes associated with aging. Res Publ Assoc Res Nerv Ment Dis 1966.
Lenzi GL, Frackowiak RSJ, Jones T, Heather JD, Lammertsma AA, Rhodes CG, Pozzilli C. CMRO2 and CBF by the oxygen-15 inhalation technique. Eur Neurol 1981; 20: 285-290.
Kety S, Schmidt C. The effects of altered arterial tension of carbon dioxide and oxygen on cerebral blood flow and cerebral oxygen consumption of normal young men. J Clin Invest 1948; 27: 484-492.
Grubb R, Raichle M, Eichling J, Ter-Pogossian M. The effects of changes in paco2 on cerebral blood volume, blood flow, and vascular mean transit time. Stroke 1974; 5: 630-639.
Martin AJ, Friston KJ, Colebatch JG, Frackowiak RSJ. Decreases in regional cerebral blood flow with normal aging. J Cereb Blood Flow Metab 1991; 11: 684-689.
Henderson G, Tomlinson BE, Gibson PH. Cell counts in human cerebral cortex in normal adults throughout life using an image analysing computer. J Neurol Sci 1980; 46: 113-136.
Friston KJ, Holmes AP, Worsley KJ, Poline J-P, Frith CD, Frackowiak RSJ. Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Mapp 1995; 2: 189-210.
Matthew E, Andreason P, Carson RE, Herscovitch P, Pettigrew K, Cohen R, King C, Johanson CE, Paul SM. Reproducibility of resting cerebral blood flow measurements with H215O positron emission tomography in humans. J Cereb Blood Flow Metab 1993; 13: 748-754.
1997; 278
1989; 20
1979; 36
2000; 47
1991; 11
1980; 46
1995; 34
1987; 7
1986; 17
2002
1995; 2
1978; 9
1981; 20
1974; 5
1979; 72
1993; 13
1998; 18
1985; 17
2002; 47
2002; 48
1987; 21
2001
1984; 15
1997; 384
2000; 54
1984; 34
1986; 6
1999; 10
1998; 208
1990; 113
1996; 312
1979; 163
1992; 89
1979; 60
1956; 3
2000; 181
1966
1948; 27
e_1_2_7_5_2
e_1_2_7_4_2
e_1_2_7_3_2
e_1_2_7_2_2
e_1_2_7_9_2
e_1_2_7_8_2
e_1_2_7_7_2
e_1_2_7_6_2
e_1_2_7_19_2
e_1_2_7_18_2
e_1_2_7_17_2
e_1_2_7_15_2
e_1_2_7_14_2
e_1_2_7_40_2
e_1_2_7_13_2
e_1_2_7_41_2
e_1_2_7_12_2
e_1_2_7_11_2
e_1_2_7_10_2
e_1_2_7_26_2
e_1_2_7_27_2
e_1_2_7_28_2
Gottstein U (e_1_2_7_33_2) 1979; 72
Sokoloff L (e_1_2_7_29_2) 1966
e_1_2_7_25_2
e_1_2_7_24_2
e_1_2_7_30_2
e_1_2_7_23_2
e_1_2_7_31_2
e_1_2_7_22_2
e_1_2_7_32_2
e_1_2_7_21_2
e_1_2_7_20_2
e_1_2_7_34_2
e_1_2_7_35_2
e_1_2_7_36_2
e_1_2_7_37_2
e_1_2_7_38_2
e_1_2_7_39_2
Shaw T (e_1_2_7_16_2) 1979; 60
References_xml – reference: Bland JM, Altman DG. Measurement error. BMJ 1996; 312: 1654.
– reference: Alsop DC, Detre JA, Grossman M. Assessment of cerebral blood flow in Alzheimer's disease by spin-labeled magnetic resonance imaging. Ann Neurol 2000; 47: 93-100.
– reference: Pantano P, Baron J, Lebrun-Grandié P, Duquesnoy N, Bousser M, Comar D. Regional cerebral blood flow and oxygen consumption in human aging. Stroke 1984; 15: 635-641.
– reference: Schreiber WG, Gückel F, Stritzke P, Schmiedek P, Schwartz A, Brix G. Cerebral blood flow and cerebrovascular reserve capacity: estimation by dynamic magnetic resonance imaging. J Cereb Blood Flow Metab 1998; 18: 1143-1156.
– reference: Friston KJ, Holmes AP, Worsley KJ, Poline J-P, Frith CD, Frackowiak RSJ. Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Mapp 1995; 2: 189-210.
– reference: Terry HD, DeTeresa R, Hansen LA. Neocortical cell counts in normal adult aging. Ann Neurol 1987; 21: 530-539.
– reference: Bentourika M, Bol A, Ivanoiu A, Labar D, Sibomana M, Coppens A, Michel C, Cosnard G, De Volder AG. Comparison of regional cerebral blood flow and glucose metabolism in the normal brain: effect of aging. J Neurol Sci 2000; 181: 19-28.
– reference: Alsop DC, Detre JA. Multisection cerebral blood flow MR imaging with continuous arterial spin labelling. Radiology 1998; 208: 410-416.
– reference: Huttenlocher PR. Synaptic density in human frontal cortex-developmental changes and effects of aging. Brain Res 1979; 163: 195-205.
– reference: Grubb R, Raichle M, Eichling J, Ter-Pogossian M. The effects of changes in paco2 on cerebral blood volume, blood flow, and vascular mean transit time. Stroke 1974; 5: 630-639.
– reference: Yamaguchi T, Kanno I, Uemura K, Shishido F, Inugami A, Ogawa T, Murakami M, Suzuki K. Reduction in regional cerebral metabolic rate of oxygen during human aging. Stroke 1986; 17: 1220-1228.
– reference: Baxter LR, Mazziotta JC, Phelps ME, Selin CE, Guze BH, Fairbanks L. Cerebral glucose metabolic rates in normal human females versus normal males. Psychol Res 1987; 21: 237-245.
– reference: Kim SG. Quantification of relative blood flow change by flow-sensitive alternating inversion recovery (FAIR) technique: application to functional mapping. Magn Reson Med 1995; 34: 293-301.
– reference: Detre JA, Samuels OB, Alsop DC, Gonzalez-At JB, Kasner SE, Raps EC. Noninvasive magnetic resonance imaging evaluation of cerebral blood flow with acetazolamide challenge in patients with cerebrovascular stenosis. Magn Reson Imaging 1999; 10: 870-875.
– reference: Leenders KL, Perani D, Lammertsma AA, Heather JD, Buckingham P, Healy MJR, Gibbs JM, Wise RJS, Hatazawa J, Herold S, Beaney RP, Brooks DJ, Spinks T, Rhodes C, Frackowiak RSJ, Jones T. Cerebral blood flow, blood volume and oxygen utilisation. Normal values and effects of age. Brain 1990; 113: 27-47.
– reference: Henderson G, Tomlinson BE, Gibson PH. Cell counts in human cerebral cortex in normal adults throughout life using an image analysing computer. J Neurol Sci 1980; 46: 113-136.
– reference: Matthew E, Andreason P, Carson RE, Herscovitch P, Pettigrew K, Cohen R, King C, Johanson CE, Paul SM. Reproducibility of resting cerebral blood flow measurements with H215O positron emission tomography in humans. J Cereb Blood Flow Metab 1993; 13: 748-754.
– reference: Meyer JS, Ishihara N, Deshmukh VD, Naritomi H, Sakai F, Hsu MC, Pollack P. Improved metod for noninvasive measurement of regional blood flow by 133Xenon inhalation. Part I: description of method and normal values obtained in healthy volunteers. Stroke 1978; 9: 195-205.
– reference: Podreka I, Baumgartner C, Suess E, Müller C, Brücke T, Lang W, Holzner F, Steiner M, Deecke L. Quantification of regional cerebral blood flow with IMP-SPECT. Stroke 1989; 20: 183-191.
– reference: Herscovitch P, Raichle ME, Kilbourn MR, Welch MJ. Positron emission tomographic measurement of cerebral blood flow and permeability-surface area product of water using [15O]water and [11C]butanol. J Cereb Blood Flow Metab 1987; 7: 527-542.
– reference: Grady CL. Functional brain imaging and age-related changes in cognition. Biol Psychol 2000; 54: 259-281.
– reference: Pakkenberg B, Gundersen HJG. Neocortical neuron number in humans: effect of sex and age. J Comp Neurol 1997; 384: 312-320.
– reference: Naritomi H, Meyer JS, Sakai F, Yamaguchi F, Shaw T. Effects of advancing age on regional cerebral blood flow. Arch Neurol 1979; 36: 410-416.
– reference: Shaw T, Meyer JS, Mortel K, Cutaia M, Sakai F, Yamaguchi F. Effects of normal aging, sex and risk factors for stoke on regional cerebral blood flow (rCBF) in normal volunteers. Acta Neurol Scand 1979; 60: 462-463.
– reference: Sokoloff L. Cerebral circulatory and metabolic changes associated with aging. Res Publ Assoc Res Nerv Ment Dis 1966.
– reference: Kety S. Human cerebral blood flow and oxygen consumption as related to aging. J Chronic Dis 1956; 3: 478-486.
– reference: Martin AJ, Friston KJ, Colebatch JG, Frackowiak RSJ. Decreases in regional cerebral blood flow with normal aging. J Cereb Blood Flow Metab 1991; 11: 684-689.
– reference: Parkes LM, Tofts PS. Improved accuracy of human cerebral blood perfusion measurements using arterial spin labeling: accounting for capillary water permeability. Magn Reson Med 2002; 48: 27-41.
– reference: Shaw T, Mortel K, Meyer J, Rogers R, Hardenberg J, Cutaia M. Cerebral blood flow changes in benign aging and cerebrovascular disease. Neurology 1984; 34: 855-862.
– reference: Lenzi GL, Frackowiak RSJ, Jones T, Heather JD, Lammertsma AA, Rhodes CG, Pozzilli C. CMRO2 and CBF by the oxygen-15 inhalation technique. Eur Neurol 1981; 20: 285-290.
– reference: Creasey H, Rapoport SI. The aging human brain. Ann Neurol 1985; 17: 2-10.
– reference: Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff RM, Poncelet BP, Kennedy DN, Hoppel BE, Cohen MS, Turner R, Cheng HM, Brady TJ, Rosen BR. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci USA 1992; 89: 5675-5679.
– reference: Gottstein U, Held K. Effects of aging on cerebral circulation and metabolism in man. Acta Neurol Scand 1979; 72: 54-55.
– reference: Yen YF, Field AS, Martin EM, Ari N, Burdette JH, Moody DM, Takahashi AM. Test-retest reproducibility of quantitative CBF measurements using FAIR perfusion MRI and acetazolamide challenge. Magn Reson Med 2002; 47: 921-928.
– reference: Morrison JH, Hof PR. Life and death of neurons in the aging brain. Science 1997; 278: 412-419.
– reference: Kety S, Schmidt C. The effects of altered arterial tension of carbon dioxide and oxygen on cerebral blood flow and cerebral oxygen consumption of normal young men. J Clin Invest 1948; 27: 484-492.
– reference: Devous MD, Stokely EM, Chehabi HH, Bonte FJ. Normal distribution of regional cerebral blood flow measured by dynamic single-photon emission tomography. J Cereb Blood Flow Metab 1986; 6: 95-104.
– volume: 21
  start-page: 237
  year: 1987
  end-page: 245
  article-title: Cerebral glucose metabolic rates in normal human females versus normal males
  publication-title: Psychol Res
– volume: 72
  start-page: 54
  year: 1979
  end-page: 55
  article-title: Effects of aging on cerebral circulation and metabolism in man
  publication-title: Acta Neurol Scand
– volume: 7
  start-page: 527
  year: 1987
  end-page: 542
  article-title: Positron emission tomographic measurement of cerebral blood flow and permeability‐surface area product of water using [ O]water and [ C]butanol
  publication-title: J Cereb Blood Flow Metab
– volume: 48
  start-page: 27
  year: 2002
  end-page: 41
  article-title: Improved accuracy of human cerebral blood perfusion measurements using arterial spin labeling: accounting for capillary water permeability
  publication-title: Magn Reson Med
– volume: 34
  start-page: 293
  year: 1995
  end-page: 301
  article-title: Quantification of relative blood flow change by flow‐sensitive alternating inversion recovery (FAIR) technique: application to functional mapping
  publication-title: Magn Reson Med
– volume: 15
  start-page: 635
  year: 1984
  end-page: 641
  article-title: Regional cerebral blood flow and oxygen consumption in human aging
  publication-title: Stroke
– volume: 60
  start-page: 462
  year: 1979
  end-page: 463
  article-title: Effects of normal aging, sex and risk factors for stoke on regional cerebral blood flow (rCBF) in normal volunteers
  publication-title: Acta Neurol Scand
– volume: 36
  start-page: 410
  year: 1979
  end-page: 416
  article-title: Effects of advancing age on regional cerebral blood flow
  publication-title: Arch Neurol
– volume: 17
  start-page: 1220
  year: 1986
  end-page: 1228
  article-title: Reduction in regional cerebral metabolic rate of oxygen during human aging
  publication-title: Stroke
– volume: 6
  start-page: 95
  year: 1986
  end-page: 104
  article-title: Normal distribution of regional cerebral blood flow measured by dynamic single‐photon emission tomography
  publication-title: J Cereb Blood Flow Metab
– volume: 3
  start-page: 478
  year: 1956
  end-page: 486
  article-title: Human cerebral blood flow and oxygen consumption as related to aging
  publication-title: J Chronic Dis
– volume: 384
  start-page: 312
  year: 1997
  end-page: 320
  article-title: Neocortical neuron number in humans: effect of sex and age
  publication-title: J Comp Neurol
– volume: 21
  start-page: 530
  year: 1987
  end-page: 539
  article-title: Neocortical cell counts in normal adult aging
  publication-title: Ann Neurol
– volume: 13
  start-page: 748
  year: 1993
  end-page: 754
  article-title: Reproducibility of resting cerebral blood flow measurements with H O positron emission tomography in humans
  publication-title: J Cereb Blood Flow Metab
– volume: 17
  start-page: 2
  year: 1985
  end-page: 10
  article-title: The aging human brain
  publication-title: Ann Neurol
– year: 1966
  article-title: Cerebral circulatory and metabolic changes associated with aging
  publication-title: Res Publ Assoc Res Nerv Ment Dis
– volume: 9
  start-page: 195
  year: 1978
  end-page: 205
  article-title: Improved metod for noninvasive measurement of regional blood flow by 133Xenon inhalation. Part I: description of method and normal values obtained in healthy volunteers
  publication-title: Stroke
– start-page: 426
  year: 2002
– volume: 208
  start-page: 410
  year: 1998
  end-page: 416
  article-title: Multisection cerebral blood flow MR imaging with continuous arterial spin labelling
  publication-title: Radiology
– volume: 46
  start-page: 113
  year: 1980
  end-page: 136
  article-title: Cell counts in human cerebral cortex in normal adults throughout life using an image analysing computer
  publication-title: J Neurol Sci
– volume: 163
  start-page: 195
  year: 1979
  end-page: 205
  article-title: Synaptic density in human frontal cortex—developmental changes and effects of aging
  publication-title: Brain Res
– volume: 5
  start-page: 630
  year: 1974
  end-page: 639
  article-title: The effects of changes in paco2 on cerebral blood volume, blood flow, and vascular mean transit time
  publication-title: Stroke
– start-page: 1569
  year: 2001
– volume: 34
  start-page: 855
  year: 1984
  end-page: 862
  article-title: Cerebral blood flow changes in benign aging and cerebrovascular disease
  publication-title: Neurology
– volume: 89
  start-page: 5675
  year: 1992
  end-page: 5679
  article-title: Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation
  publication-title: Proc Natl Acad Sci USA
– volume: 278
  start-page: 412
  year: 1997
  end-page: 419
  article-title: Life and death of neurons in the aging brain
  publication-title: Science
– volume: 11
  start-page: 684
  year: 1991
  end-page: 689
  article-title: Decreases in regional cerebral blood flow with normal aging
  publication-title: J Cereb Blood Flow Metab
– volume: 20
  start-page: 285
  year: 1981
  end-page: 290
  article-title: CMRO2 and CBF by the oxygen‐15 inhalation technique
  publication-title: Eur Neurol
– volume: 47
  start-page: 921
  year: 2002
  end-page: 928
  article-title: Test‐retest reproducibility of quantitative CBF measurements using FAIR perfusion MRI and acetazolamide challenge
  publication-title: Magn Reson Med
– volume: 2
  start-page: 189
  year: 1995
  end-page: 210
  article-title: Statistical parametric maps in functional imaging: a general linear approach
  publication-title: Hum Brain Mapp
– volume: 20
  start-page: 183
  year: 1989
  end-page: 191
  article-title: Quantification of regional cerebral blood flow with IMP‐SPECT
  publication-title: Stroke
– volume: 181
  start-page: 19
  year: 2000
  end-page: 28
  article-title: Comparison of regional cerebral blood flow and glucose metabolism in the normal brain: effect of aging
  publication-title: J Neurol Sci
– start-page: 1336
  year: 2002
– volume: 47
  start-page: 93
  year: 2000
  end-page: 100
  article-title: Assessment of cerebral blood flow in Alzheimer's disease by spin‐labeled magnetic resonance imaging
  publication-title: Ann Neurol
– volume: 113
  start-page: 27
  year: 1990
  end-page: 47
  article-title: Cerebral blood flow, blood volume and oxygen utilisation. Normal values and effects of age
  publication-title: Brain
– volume: 54
  start-page: 259
  year: 2000
  end-page: 281
  article-title: Functional brain imaging and age‐related changes in cognition
  publication-title: Biol Psychol
– volume: 312
  start-page: 1654
  year: 1996
  article-title: Measurement error
  publication-title: BMJ
– volume: 10
  start-page: 870
  year: 1999
  end-page: 875
  article-title: Noninvasive magnetic resonance imaging evaluation of cerebral blood flow with acetazolamide challenge in patients with cerebrovascular stenosis
  publication-title: Magn Reson Imaging
– volume: 18
  start-page: 1143
  year: 1998
  end-page: 1156
  article-title: Cerebral blood flow and cerebrovascular reserve capacity: estimation by dynamic magnetic resonance imaging
  publication-title: J Cereb Blood Flow Metab
– volume: 27
  start-page: 484
  year: 1948
  end-page: 492
  article-title: The effects of altered arterial tension of carbon dioxide and oxygen on cerebral blood flow and cerebral oxygen consumption of normal young men
  publication-title: J Clin Invest
– ident: e_1_2_7_4_2
  doi: 10.1002/(SICI)1522-2586(199911)10:5<870::AID-JMRI36>3.0.CO;2-D
– ident: e_1_2_7_32_2
  doi: 10.1002/ana.410210603
– ident: e_1_2_7_8_2
  doi: 10.1161/01.STR.15.4.635
– ident: e_1_2_7_14_2
  doi: 10.1161/01.STR.20.2.183
– ident: e_1_2_7_10_2
  doi: 10.1038/jcbfm.1986.12
– ident: e_1_2_7_41_2
– ident: e_1_2_7_2_2
  doi: 10.1073/pnas.89.12.5675
– ident: e_1_2_7_18_2
  doi: 10.1002/mrm.10180
– ident: e_1_2_7_35_2
– ident: e_1_2_7_7_2
  doi: 10.1038/jcbfm.1991.121
– ident: e_1_2_7_23_2
  doi: 10.1097/00004647-199810000-00011
– volume: 72
  start-page: 54
  year: 1979
  ident: e_1_2_7_33_2
  article-title: Effects of aging on cerebral circulation and metabolism in man
  publication-title: Acta Neurol Scand
– ident: e_1_2_7_27_2
  doi: 10.1016/0021-9681(56)90146-1
– ident: e_1_2_7_13_2
  doi: 10.1159/000115248
– ident: e_1_2_7_37_2
  doi: 10.1016/0165-1781(87)90028-X
– ident: e_1_2_7_25_2
  doi: 10.1002/(SICI)1096-9861(19970728)384:2<312::AID-CNE10>3.0.CO;2-K
– ident: e_1_2_7_36_2
  doi: 10.1016/S0301-0511(00)00059-4
– ident: e_1_2_7_15_2
– ident: e_1_2_7_9_2
  doi: 10.1016/S0022-510X(00)00396-8
– ident: e_1_2_7_28_2
  doi: 10.1212/WNL.34.7.855
– ident: e_1_2_7_39_2
  doi: 10.1172/JCI101995
– ident: e_1_2_7_21_2
  doi: 10.1038/jcbfm.1993.95
– ident: e_1_2_7_20_2
  doi: 10.1136/bmj.312.7047.1654
– ident: e_1_2_7_3_2
  doi: 10.1002/mrm.1910340303
– ident: e_1_2_7_24_2
  doi: 10.1016/0022-510X(80)90048-9
– volume: 60
  start-page: 462
  year: 1979
  ident: e_1_2_7_16_2
  article-title: Effects of normal aging, sex and risk factors for stoke on regional cerebral blood flow (rCBF) in normal volunteers
  publication-title: Acta Neurol Scand
– year: 1966
  ident: e_1_2_7_29_2
  article-title: Cerebral circulatory and metabolic changes associated with aging
  publication-title: Res Publ Assoc Res Nerv Ment Dis
– ident: e_1_2_7_40_2
  doi: 10.1161/01.STR.5.5.630
– ident: e_1_2_7_31_2
  doi: 10.1016/0006-8993(79)90349-4
– ident: e_1_2_7_5_2
  doi: 10.1002/1531-8249(200001)47:1<93::AID-ANA15>3.0.CO;2-8
– ident: e_1_2_7_19_2
  doi: 10.1002/hbm.460020402
– ident: e_1_2_7_22_2
  doi: 10.1038/jcbfm.1987.102
– ident: e_1_2_7_17_2
  doi: 10.1148/radiology.208.2.9680569
– ident: e_1_2_7_30_2
  doi: 10.1126/science.278.5337.412
– ident: e_1_2_7_6_2
  doi: 10.1093/brain/113.1.27
– ident: e_1_2_7_26_2
  doi: 10.1002/ana.410170103
– ident: e_1_2_7_11_2
  doi: 10.1001/archneur.1979.00500430040005
– ident: e_1_2_7_12_2
  doi: 10.1161/01.STR.9.3.195
– ident: e_1_2_7_34_2
  doi: 10.1161/01.STR.17.6.1220
– ident: e_1_2_7_38_2
  doi: 10.1002/mrm.10140
SSID ssj0009974
Score 2.3233867
Snippet Before meaningful conclusions can be drawn from clinical measures of cerebral blood perfusion, the precision of the measurement must be determined and set in...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 736
SubjectTerms Adult
age
Age Factors
Aged
arterial spin labeling
Brain - blood supply
Cerebral Arteries - physiology
cerebral perfusion
Cerebrovascular Circulation - physiology
Female
Follow-Up Studies
Frontal Lobe - blood supply
gender
Humans
Image Enhancement - methods
Linear Models
Magnetic Resonance Imaging - methods
Male
Middle Aged
Parietal Lobe - blood supply
reproducibility
Reproducibility of Results
Sex Factors
Spin Labels
Title Normal cerebral perfusion measurements using arterial spin labeling: Reproducibility, stability, and age and gender effects
URI https://api.istex.fr/ark:/67375/WNG-2RN7XJRD-F/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.20023
https://www.ncbi.nlm.nih.gov/pubmed/15065246
https://www.proquest.com/docview/17829517
https://www.proquest.com/docview/71798885
Volume 51
WOSCitedRecordID wos000220557200012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  issn: 0740-3194
  databaseCode: DRFUL
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  issn: 0740-3194
  databaseCode: WIN
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9tKyBe-BiwlY9hIYR4WLTUcWIbnhCjfIhGqBpa3yzHsaeJLquSFYH45zk7SatJm4TEUxzpIjnnO9_P9t3PAC-lzYRzmY0kpTZipbBRYdGvCuGM5FqWUsfhsgme52I2k9824G1fC9PyQ6w23LxnhPnaO7gumoM1aehZHQrJabIJA19UhSuvweF0_P3rmnNXtiTMnPmpRrKeWCimB6uPL4Wjgdfsr6uw5mXoGmLP-O5_9foe3OkgJ3nX2sh92LDVNtyadIfq23AzZIGa5gH8yT2CnRNja3-ePCcLW7ul308jZ-u9xIb4ZPkTErJB0XxJszitCFpTKG1_QxDTBxrZNu_29z5BANo3dVUSnMHC8yTcYke6jJKHcDT-cPT-U9TdzhAZBF1JZITWI2lKwSXCGK1dRs3IFZnLCpbiqoszgXDH2VQXsdA05kVCZYwxsxQjg_HyEWxV55XdBcJKK5jVDGOpZrGLpbFJlhRlVsZMl5kbwut-jJTpmMv9BRpz1XIuU4VaVUGrQ3ixEl20dB1XCb0KA72S0PUPn9_GU3Wcf1R0mvPZl-mhGg_heW8JCr3OH6Xoyp4vGzVCYIXYlF8vwQMTnEiHsNOa0Lo_KeqLsgx_K1jK9R1Vk-kkNB7_u-gTuL1OLnoKWxf10j6DG-bnxWlT78Emn4m9zlHw7fhz_heTdxdi
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-Nlq8XPgaD8jULIcQD0VLH8QfiBTHKgDZCVSf6ZjmOPU3rsipZEYh_HttJWk3aJCSe4oeL5JzvfL-cz78DeCUM5dZSEwmMTUQKbqLcOL_KudWCKVEIFYdmEyzL-Hwuvm_B--4uTMMPsU64ec8I-7V3cJ-Q3tuwhp5W4SY5Tq5Bn9CE8R7096ejw_GGdFc0LMyM-L1GkI5ZKMZ765cvxKO-V-2vy8DmRewags_o7v9N-x7caUEn-tBYyX3YMuU23Jy0x-rbcCPUger6AfzJPIZdIG0qf6K8QEtT2ZXPqKHTTTaxRr5c_giFelBnwKheHpfI2VO43P4OOVQfiGSbytvfb5GDoN1QlQVye1h4HoU-dqitKXkIs9Gn2ceDqO3PEGkHu5JIc6WGQhecCQdklLIU66HNqaU5Sd1_FyPcAR5rUpXHXOGY5QkWsYuaBR9qFzF3oFeeleYxIFIYTowiLpoqEttYaJPQJC9oERNVUDuAN90iSd1yl_sWGgvZsC5j6bQqg1YH8HItumwIOy4Teh1Wei2hqhNf4cZS-SP7LPE0Y_Ov0305GsBuZwrS-Z0_TFGlOVvVcuiglUOn7GoJFrjgeDqAR40NbeaTOn1hQt1nBVO5eqJyMp2EwZN_F92FWwezyViOv2TfnsLtTanRM-idVyvzHK7rn-fHdfWi9Ze_GQQZWw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7SpA259JE-sn1FlFJ6iIlXli2p9FKabpu2a8ISyN6ELEshdOMs3mxp6Z_vSLbXBBIo9GQdxiBLM5rP0qdvAF5LmwnnMhtJSm3ESmGjwmJcFcIZybUspY5DsQme52I6lUdr8L67C9PoQ6w23HxkhPXaB7idl26_Vw09r8NNcprcgg2GONwTuk4O815yVzYazJz5lUayTlcopvurV69kow0_sL-ug5pXkWtIPaN7_9fp-3C3hZzkQ-MjD2DNVtuwOW4P1bfhTmCBmsVD-JN7BDsjxtb-PHlG5rZ2S7-fRs77vcQF8WT5UxLYoOi-ZDE_qwh6U7ja_o4gpg8ysg3v9vceQQDaNXVVElzBwvM0VLEjLaPkERyPPh1__BK11Rkig6AriYzQeihNKbhEGKO1y6gZuiJzWcFS_OviTCDccTbVRSw0jXmRUBljzizF0GC-fAzr1UVld4Cw0gpmNcNcqlnsYmlskiVFmZUx02XmBvC2myRlWuVyX0BjphrNZapwVFUY1QG8WpnOG7mO64zehJleWej6h-e38VSd5J8VneR8-nVyoEYD2O1cQWHU-aMUXdmL5UINEVghNuU3W_CgBCfSATxpfKjvT4rjRVmGnxVc5eaOqvFkHBpP_910FzaPDkbq-2H-7Rls9Tyj57B-WS_tC7htfl6eLeqXIVj-AjE2F7E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Normal+cerebral+perfusion+measurements+using+arterial+spin+labeling%3A+Reproducibility%2C+stability%2C+and+age+and+gender+effects&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Parkes%2C+Laura+M.&rft.au=Rashid%2C+Waqar&rft.au=Chard%2C+Declan+T.&rft.au=Tofts%2C+Paul+S.&rft.date=2004-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=51&rft.issue=4&rft.spage=736&rft.epage=743&rft_id=info:doi/10.1002%2Fmrm.20023&rft.externalDBID=10.1002%252Fmrm.20023&rft.externalDocID=MRM20023
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon