Normal cerebral perfusion measurements using arterial spin labeling: Reproducibility, stability, and age and gender effects
Before meaningful conclusions can be drawn from clinical measures of cerebral blood perfusion, the precision of the measurement must be determined and set in the context of inter‐ and intrasubject sources of variability. This work establishes the reproducibility of perfusion measurements using the n...
Gespeichert in:
| Veröffentlicht in: | Magnetic resonance in medicine Jg. 51; H. 4; S. 736 - 743 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.04.2004
|
| Schlagworte: | |
| ISSN: | 0740-3194, 1522-2594 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Before meaningful conclusions can be drawn from clinical measures of cerebral blood perfusion, the precision of the measurement must be determined and set in the context of inter‐ and intrasubject sources of variability. This work establishes the reproducibility of perfusion measurements using the noninvasive MRI technique of continuous arterial spin labeling (CASL). Perfusion was measured in 34 healthy normal subjects. Intersubject variability was assessed, and age and gender contributions were estimated. Intersubject variation was found to be large, with up to 100% perfusion difference for subjects of the same age and gender. Repeated measurements in one subject showed that perfusion remains remarkably stable in the short term when compared with intersubject variation and the large capacity for perfusion change in the brain. A significant decrease in the ratio of gray‐matter to white‐matter perfusion was found with increasing age (0.79% per year (P < 0.0005)). This appears to be due mainly to a reduction in gray‐matter perfusion, which was found to decrease by 0.45% per year (P = 0.04). Regional analysis suggested that the gray‐matter age‐related changes were predominantly localized in the frontal cortex. Whole‐brain perfusion was 13% higher (P = 0.02) in females compared to males. Magn Reson Med 51:736–743, 2004. © 2004 Wiley‐Liss, Inc. |
|---|---|
| AbstractList | Before meaningful conclusions can be drawn from clinical measures of cerebral blood perfusion, the precision of the measurement must be determined and set in the context of inter- and intrasubject sources of variability. This work establishes the reproducibility of perfusion measurements using the noninvasive MRI technique of continuous arterial spin labeling (CASL). Perfusion was measured in 34 healthy normal subjects. Intersubject variability was assessed, and age and gender contributions were estimated. Intersubject variation was found to be large, with up to 100% perfusion difference for subjects of the same age and gender. Repeated measurements in one subject showed that perfusion remains remarkably stable in the short term when compared with intersubject variation and the large capacity for perfusion change in the brain. A significant decrease in the ratio of gray-matter to white-matter perfusion was found with increasing age (0.79% per year (P < 0.0005)). This appears to be due mainly to a reduction in gray-matter perfusion, which was found to decrease by 0.45% per year (P = 0.04). Regional analysis suggested that the gray-matter age-related changes were predominantly localized in the frontal cortex. Whole-brain perfusion was 13% higher (P = 0.02) in females compared to males.Before meaningful conclusions can be drawn from clinical measures of cerebral blood perfusion, the precision of the measurement must be determined and set in the context of inter- and intrasubject sources of variability. This work establishes the reproducibility of perfusion measurements using the noninvasive MRI technique of continuous arterial spin labeling (CASL). Perfusion was measured in 34 healthy normal subjects. Intersubject variability was assessed, and age and gender contributions were estimated. Intersubject variation was found to be large, with up to 100% perfusion difference for subjects of the same age and gender. Repeated measurements in one subject showed that perfusion remains remarkably stable in the short term when compared with intersubject variation and the large capacity for perfusion change in the brain. A significant decrease in the ratio of gray-matter to white-matter perfusion was found with increasing age (0.79% per year (P < 0.0005)). This appears to be due mainly to a reduction in gray-matter perfusion, which was found to decrease by 0.45% per year (P = 0.04). Regional analysis suggested that the gray-matter age-related changes were predominantly localized in the frontal cortex. Whole-brain perfusion was 13% higher (P = 0.02) in females compared to males. Before meaningful conclusions can be drawn from clinical measures of cerebral blood perfusion, the precision of the measurement must be determined and set in the context of inter‐ and intrasubject sources of variability. This work establishes the reproducibility of perfusion measurements using the noninvasive MRI technique of continuous arterial spin labeling (CASL). Perfusion was measured in 34 healthy normal subjects. Intersubject variability was assessed, and age and gender contributions were estimated. Intersubject variation was found to be large, with up to 100% perfusion difference for subjects of the same age and gender. Repeated measurements in one subject showed that perfusion remains remarkably stable in the short term when compared with intersubject variation and the large capacity for perfusion change in the brain. A significant decrease in the ratio of gray‐matter to white‐matter perfusion was found with increasing age (0.79% per year (P < 0.0005)). This appears to be due mainly to a reduction in gray‐matter perfusion, which was found to decrease by 0.45% per year (P = 0.04). Regional analysis suggested that the gray‐matter age‐related changes were predominantly localized in the frontal cortex. Whole‐brain perfusion was 13% higher (P = 0.02) in females compared to males. Magn Reson Med 51:736–743, 2004. © 2004 Wiley‐Liss, Inc. Before meaningful conclusions can be drawn from clinical measures of cerebral blood perfusion, the precision of the measurement must be determined and set in the context of inter- and intrasubject sources of variability. This work establishes the reproducibility of perfusion measurements using the noninvasive MRI technique of continuous arterial spin labeling (CASL). Perfusion was measured in 34 healthy normal subjects. Intersubject variability was assessed, and age and gender contributions were estimated. Intersubject variation was found to be large, with up to 100% perfusion difference for subjects of the same age and gender. Repeated measurements in one subject showed that perfusion remains remarkably stable in the short term when compared with intersubject variation and the large capacity for perfusion change in the brain. A significant decrease in the ratio of gray-matter to white-matter perfusion was found with increasing age (0.79% per year (P < 0.0005)). This appears to be due mainly to a reduction in gray-matter perfusion, which was found to decrease by 0.45% per year (P = 0.04). Regional analysis suggested that the gray-matter age-related changes were predominantly localized in the frontal cortex. Whole-brain perfusion was 13% higher (P = 0.02) in females compared to males. Before meaningful conclusions can be drawn from clinical measures of cerebral blood perfusion, the precision of the measurement must be determined and set in the context of inter‐ and intrasubject sources of variability. This work establishes the reproducibility of perfusion measurements using the noninvasive MRI technique of continuous arterial spin labeling (CASL). Perfusion was measured in 34 healthy normal subjects. Intersubject variability was assessed, and age and gender contributions were estimated. Intersubject variation was found to be large, with up to 100% perfusion difference for subjects of the same age and gender. Repeated measurements in one subject showed that perfusion remains remarkably stable in the short term when compared with intersubject variation and the large capacity for perfusion change in the brain. A significant decrease in the ratio of gray‐matter to white‐matter perfusion was found with increasing age (0.79% per year ( P < 0.0005)). This appears to be due mainly to a reduction in gray‐matter perfusion, which was found to decrease by 0.45% per year ( P = 0.04). Regional analysis suggested that the gray‐matter age‐related changes were predominantly localized in the frontal cortex. Whole‐brain perfusion was 13% higher ( P = 0.02) in females compared to males. Magn Reson Med 51:736–743, 2004. © 2004 Wiley‐Liss, Inc. |
| Author | Parkes, Laura M. Rashid, Waqar Chard, Declan T. Tofts, Paul S. |
| Author_xml | – sequence: 1 givenname: Laura M. surname: Parkes fullname: Parkes, Laura M. email: laura.parkes@fcdonders.kun.nl organization: NMR Research Unit, Department of Neuroinflammation, Institute of Neurology, University College London, London, UK – sequence: 2 givenname: Waqar surname: Rashid fullname: Rashid, Waqar organization: NMR Research Unit, Department of Neuroinflammation, Institute of Neurology, University College London, London, UK – sequence: 3 givenname: Declan T. surname: Chard fullname: Chard, Declan T. organization: NMR Research Unit, Department of Neuroinflammation, Institute of Neurology, University College London, London, UK – sequence: 4 givenname: Paul S. surname: Tofts fullname: Tofts, Paul S. organization: NMR Research Unit, Department of Neuroinflammation, Institute of Neurology, University College London, London, UK |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/15065246$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkV9rFDEUxYNU7Lb64BeQeRKETptkksnEN6ltVdoVloK-hTuZmyU6f9Ykgy5-eWO3qyCoT-dw-Z3L5Z4jcjBOIxLylNFTRik_G8JwyrOpHpAFk5yXXGpxQBZUCVpWTItDchTjJ0qp1ko8IodM0lpyUS_I9-UUBugLiwHbkM0Gg5ujn8ZiQIhzwAHHFIs8GtcFhITBZypu_Fj00GKfxy-LFW7C1M3Wt773aXtSxAR7C2NXwBrvdI1jh6FA59Cm-Jg8dNBHfHKvx-T28uL2_E15_f7q7fmr69IKWVelbQCYtl2jdL4awNXcMtfWrm6F1LJWoqG1cCihpQ1wqtqKaypY1TXMMl4dk-e7tfnGLzPGZAYfLfY9jDjN0SimdNM08r8gUw3XkqkMPrsH53bAzmyCHyBszf6tGXixA2yYYgzofiPU_KzM5MrMXWWZPfuDtT5Byg2kAL7_V-Kr73H799XmZnWzT5S7hI8Jv_1KQPhsalUpaT4srwxfLdXHd6vX5rL6Acm7t6c |
| CitedBy_id | crossref_primary_10_1002_jmri_24920 crossref_primary_10_1002_jmri_24246 crossref_primary_10_1007_s00234_015_1497_5 crossref_primary_10_1007_s00330_018_5353_y crossref_primary_10_1038_jcbfm_2015_14 crossref_primary_10_3389_fnagi_2018_00270 crossref_primary_10_1016_j_neuroimage_2005_12_007 crossref_primary_10_3389_fphys_2022_934731 crossref_primary_10_1002_brb3_2126 crossref_primary_10_1016_j_jneumeth_2015_02_017 crossref_primary_10_1186_s40478_023_01700_z crossref_primary_10_1002_jmri_20329 crossref_primary_10_1016_j_neuroimage_2013_03_068 crossref_primary_10_1007_s11357_024_01288_9 crossref_primary_10_1002_jmri_28967 crossref_primary_10_1002_mrm_21670 crossref_primary_10_1002_mrm_28988 crossref_primary_10_1016_j_brs_2021_02_011 crossref_primary_10_1148_radiol_10091224 crossref_primary_10_1016_j_neuroimage_2021_117741 crossref_primary_10_1371_journal_pone_0091251 crossref_primary_10_1016_j_neuroimage_2024_120506 crossref_primary_10_1016_j_neuroimage_2010_08_043 crossref_primary_10_1016_j_nicl_2013_11_003 crossref_primary_10_1093_cercor_bhac057 crossref_primary_10_1002_mrm_21317 crossref_primary_10_1089_neu_2020_7272 crossref_primary_10_1016_j_mri_2011_02_030 crossref_primary_10_1016_j_neuroimage_2010_12_032 crossref_primary_10_1038_s41598_022_22599_x crossref_primary_10_1002_mrm_30376 crossref_primary_10_1148_radiol_2512081548 crossref_primary_10_1016_j_neuroimage_2022_119512 crossref_primary_10_1002_nbm_4202 crossref_primary_10_1111_j_1552_6569_2008_00277_x crossref_primary_10_3390_brainsci14100983 crossref_primary_10_1002_mrm_23286 crossref_primary_10_1177_0271678X231153741 crossref_primary_10_1371_journal_pone_0163071 crossref_primary_10_1007_s11682_024_00914_6 crossref_primary_10_3390_nu10050530 crossref_primary_10_2460_ajvr_77_11_1227 crossref_primary_10_1093_eurheartj_ehac061 crossref_primary_10_1111_j_1469_8986_2011_01331_x crossref_primary_10_1002_mrm_21420 crossref_primary_10_1371_journal_pone_0223584 crossref_primary_10_1002_ana_27135 crossref_primary_10_1038_s41598_025_05406_1 crossref_primary_10_1371_journal_pone_0135827 crossref_primary_10_3389_fgwh_2025_1531062 crossref_primary_10_1002_jmri_21794 crossref_primary_10_1182_blood_2005_10_4029 crossref_primary_10_1016_j_neuroimage_2023_120251 crossref_primary_10_1113_JP279453 crossref_primary_10_1053_j_jvca_2005_12_015 crossref_primary_10_1155_2022_8484977 crossref_primary_10_1158_0008_5472_CAN_24_0401 crossref_primary_10_1002_mrm_24601 crossref_primary_10_1016_j_biopsych_2016_04_021 crossref_primary_10_1016_j_neuroimage_2011_07_092 crossref_primary_10_1038_sj_jcbfm_9600570 crossref_primary_10_1038_jcbfm_2013_147 crossref_primary_10_1016_j_neuroimage_2010_03_008 crossref_primary_10_3389_fnagi_2020_00245 crossref_primary_10_3233_JAD_230553 crossref_primary_10_3390_cancers14194734 crossref_primary_10_1016_j_neurobiolaging_2011_09_032 crossref_primary_10_1007_s11095_022_03281_3 crossref_primary_10_1080_17482960802411740 crossref_primary_10_1016_S1001_9294_14_60069_9 crossref_primary_10_1016_j_jshs_2020_01_004 crossref_primary_10_1177_1971400919834693 crossref_primary_10_1161_STROKEAHA_121_035674 crossref_primary_10_1002_mrm_28195 crossref_primary_10_1177_1352458512441984 crossref_primary_10_1002_jmri_20456 crossref_primary_10_1002_jmri_22878 crossref_primary_10_1007_s00429_016_1362_2 crossref_primary_10_1007_s11065_020_09451_7 crossref_primary_10_1016_j_neubiorev_2016_11_023 crossref_primary_10_1161_01_STR_0000177884_72657_8b crossref_primary_10_1016_j_nicl_2025_103746 crossref_primary_10_1002_hbm_70328 crossref_primary_10_3348_kjr_2020_0716 crossref_primary_10_3390_jcm8071015 crossref_primary_10_1002_jmri_24493 crossref_primary_10_3389_fneur_2023_1240300 crossref_primary_10_1007_s11064_012_0854_6 crossref_primary_10_1097_RMR_0b013e31821e570a crossref_primary_10_1016_j_irbm_2015_01_016 crossref_primary_10_1111_jsr_14190 crossref_primary_10_1016_j_neubiorev_2021_07_003 crossref_primary_10_1111_jon_12757 crossref_primary_10_1002_jmri_27438 crossref_primary_10_1016_j_mri_2013_04_010 crossref_primary_10_1007_s00330_019_06096_w crossref_primary_10_1017_S135561771700087X crossref_primary_10_1007_s11910_005_0049_5 crossref_primary_10_1016_j_neurobiolaging_2021_04_008 crossref_primary_10_1002_mrm_23093 crossref_primary_10_1002_mrm_28661 crossref_primary_10_1007_s00234_015_1571_z crossref_primary_10_1038_s41398_024_02961_5 crossref_primary_10_1002_jmri_22788 crossref_primary_10_1109_TMI_2015_2395257 crossref_primary_10_1016_j_ultrasmedbio_2018_06_016 crossref_primary_10_1080_0361073X_2021_1929748 crossref_primary_10_1161_STROKEAHA_120_032941 crossref_primary_10_1007_s40262_018_0709_7 crossref_primary_10_1097_RMR_0b013e3181808140 crossref_primary_10_1016_j_resp_2007_10_010 crossref_primary_10_1002_mrm_24984 crossref_primary_10_1038_s41380_023_02217_6 crossref_primary_10_3389_fnagi_2021_734992 crossref_primary_10_1038_s41598_018_20162_1 crossref_primary_10_1016_j_neuroimage_2021_118472 crossref_primary_10_1177_0300060518779716 crossref_primary_10_3389_fnagi_2022_803332 crossref_primary_10_1161_HYPERTENSIONAHA_118_11143 crossref_primary_10_1007_s00234_022_02910_3 crossref_primary_10_1002_jmri_25367 crossref_primary_10_1016_j_jneumeth_2018_08_018 crossref_primary_10_1016_j_neuropsychologia_2017_11_011 crossref_primary_10_1007_s11682_021_00588_4 crossref_primary_10_1016_j_neuroimage_2018_09_060 crossref_primary_10_1002_jmri_28874 crossref_primary_10_1371_journal_pone_0014801 crossref_primary_10_1186_1532_429X_15_70 crossref_primary_10_1016_j_neurobiolaging_2016_11_004 crossref_primary_10_1667_RADE_21_00143_1 crossref_primary_10_1007_s11682_019_00157_w crossref_primary_10_1002_hbm_20288 crossref_primary_10_1038_jcbfm_2012_58 crossref_primary_10_1073_pnas_2310044121 crossref_primary_10_1152_japplphysiol_00436_2024 crossref_primary_10_1016_S0150_9861_05_83159_1 crossref_primary_10_1016_j_eplepsyres_2008_08_001 crossref_primary_10_1016_j_drugalcdep_2008_06_007 crossref_primary_10_3109_17482968_2011_625569 crossref_primary_10_3389_fnut_2017_00032 crossref_primary_10_1177_1971400920943967 crossref_primary_10_1016_j_exger_2022_111903 crossref_primary_10_1002_hbm_22142 crossref_primary_10_1124_jpet_110_172577 crossref_primary_10_1007_s00247_022_05344_4 crossref_primary_10_1016_j_neuroimage_2013_03_003 crossref_primary_10_1002_mrm_22465 crossref_primary_10_1371_journal_pone_0164112 crossref_primary_10_1002_mrm_20604 crossref_primary_10_1148_radiol_2451061493 crossref_primary_10_1038_npp_2017_113 crossref_primary_10_1016_j_ejmp_2022_10_013 crossref_primary_10_1016_j_pscychresns_2010_02_010 crossref_primary_10_1111_adb_12705 crossref_primary_10_1371_journal_pone_0144743 crossref_primary_10_1016_j_neuroimage_2021_117807 crossref_primary_10_1002_hipo_23327 crossref_primary_10_1016_j_jvir_2012_07_010 crossref_primary_10_1007_s11065_014_9264_7 crossref_primary_10_1111_pedi_13313 crossref_primary_10_1148_radiol_2462061775 crossref_primary_10_7554_eLife_96155 crossref_primary_10_1002_mrm_28559 crossref_primary_10_1371_journal_pone_0174932 crossref_primary_10_1016_j_nicl_2025_103828 crossref_primary_10_1259_bjr_74316620 crossref_primary_10_3233_JAD_161266 crossref_primary_10_1038_jcbfm_2014_17 crossref_primary_10_1016_j_neurobiolaging_2021_08_014 crossref_primary_10_1007_s00117_010_2093_7 crossref_primary_10_1038_s41597_025_05406_w crossref_primary_10_1093_schbul_sbx051 crossref_primary_10_1002_jmri_22345 crossref_primary_10_1177_0271678X19855875 crossref_primary_10_1002_nbm_4852 crossref_primary_10_1002_nbm_1462 crossref_primary_10_1016_j_mric_2021_06_002 crossref_primary_10_1002_jmri_24648 crossref_primary_10_1002_mp_15468 crossref_primary_10_1016_j_neuroimage_2009_07_068 crossref_primary_10_1177_0271678X16636393 crossref_primary_10_3233_JAD_201165 crossref_primary_10_1212_WNL_0b013e318233b229 crossref_primary_10_1177_0271678X16668536 crossref_primary_10_1002_jmri_20839 crossref_primary_10_1038_jcbfm_2010_89 crossref_primary_10_1002_hbm_24613 crossref_primary_10_3390_brainsci11040491 crossref_primary_10_1111_j_1530_0277_2011_01435_x crossref_primary_10_1016_j_pcad_2007_01_001 crossref_primary_10_1088_0031_9155_61_15_5587 crossref_primary_10_1097_WCO_0000000000000346 crossref_primary_10_3389_fnagi_2014_00059 crossref_primary_10_1017_S0033291722002288 crossref_primary_10_1093_cercor_bhq090 crossref_primary_10_1007_s10548_012_0265_7 crossref_primary_10_1038_s41386_024_01943_x crossref_primary_10_15857_ksep_2023_00255 crossref_primary_10_1002_nbm_1210 crossref_primary_10_1007_s10334_007_0073_3 crossref_primary_10_1016_j_nrleng_2017_06_001 crossref_primary_10_1016_j_bbadis_2011_09_008 crossref_primary_10_1148_radiol_12111509 crossref_primary_10_1007_s00247_018_4232_7 crossref_primary_10_1177_0271678X18797343 crossref_primary_10_1097_HJH_0000000000002709 crossref_primary_10_1136_bmjopen_2017_018160 crossref_primary_10_1002_hup_1263 crossref_primary_10_1007_s11682_010_9108_x crossref_primary_10_1016_j_mri_2015_11_002 crossref_primary_10_1503_jpn_170150 crossref_primary_10_1016_j_heliyon_2022_e12364 crossref_primary_10_1007_s00421_019_04118_5 crossref_primary_10_1016_j_neuroimage_2011_04_030 crossref_primary_10_3171_2018_9_FOCUS18369 crossref_primary_10_1002_jmri_20503 crossref_primary_10_1016_j_neuroimage_2017_07_020 crossref_primary_10_1111_psyp_12288 crossref_primary_10_1016_j_neuroimage_2017_05_054 crossref_primary_10_1371_journal_pcbi_1011127 crossref_primary_10_1002_nbm_5009 crossref_primary_10_1038_s41386_024_01800_x crossref_primary_10_1002_hbm_20719 crossref_primary_10_1016_j_neuroimage_2019_01_035 crossref_primary_10_1016_j_neurobiolaging_2007_11_012 crossref_primary_10_1038_jcbfm_2013_17 crossref_primary_10_1371_journal_pone_0133717 crossref_primary_10_1016_j_biocel_2017_05_005 crossref_primary_10_1016_j_neuropsychologia_2013_06_025 crossref_primary_10_1523_JNEUROSCI_2966_07_2007 crossref_primary_10_1002_jmri_24891 crossref_primary_10_1152_japplphysiol_90349_2008 crossref_primary_10_1212_WNL_0b013e3181b59a97 crossref_primary_10_1016_j_brainres_2009_12_020 crossref_primary_10_1016_j_alcohol_2011_04_002 crossref_primary_10_1186_s12887_019_1876_x crossref_primary_10_1016_j_mri_2010_05_002 crossref_primary_10_1016_j_clineuro_2021_107102 crossref_primary_10_1017_S0033291716000702 crossref_primary_10_1002_mrm_25525 crossref_primary_10_1177_19714009211002778 crossref_primary_10_1002_mrm_22256 crossref_primary_10_1016_j_pnpbp_2017_09_018 crossref_primary_10_1038_jcbfm_2009_256 crossref_primary_10_1038_jcbfm_2012_180 crossref_primary_10_1002_jmri_20761 crossref_primary_10_7554_eLife_96155_3 crossref_primary_10_1002_art_37685 crossref_primary_10_1016_j_clon_2023_09_015 crossref_primary_10_1016_j_biopsych_2013_02_026 crossref_primary_10_1016_j_neubiorev_2017_02_004 crossref_primary_10_1016_j_cortex_2016_11_002 crossref_primary_10_1038_jcbfm_2011_10 crossref_primary_10_1158_0008_5472_CAN_21_2794 crossref_primary_10_1371_journal_pone_0197055 crossref_primary_10_1371_journal_pone_0276912 crossref_primary_10_1371_journal_pone_0104108 crossref_primary_10_1016_j_clinimag_2011_11_003 crossref_primary_10_1371_journal_pone_0132929 crossref_primary_10_1002_hbm_20574 crossref_primary_10_1161_STROKEAHA_119_026499 crossref_primary_10_1016_j_biopsycho_2011_10_006 crossref_primary_10_1007_s12975_021_00983_5 crossref_primary_10_1038_jcbfm_2014_163 crossref_primary_10_1111_ene_14534 crossref_primary_10_1016_j_neuroimage_2023_120167 crossref_primary_10_1016_j_neuroimage_2025_121098 crossref_primary_10_1016_j_mri_2010_03_037 crossref_primary_10_1007_s00234_016_1713_y crossref_primary_10_1002_jmri_24559 crossref_primary_10_1111_epi_17831 crossref_primary_10_1002_hbm_21418 crossref_primary_10_1002_mrm_28932 crossref_primary_10_1016_j_neulet_2013_12_011 crossref_primary_10_1016_j_nurt_2007_04_005 crossref_primary_10_1016_j_neuroimage_2019_01_004 crossref_primary_10_1016_j_neuroimage_2023_120039 crossref_primary_10_3389_fneur_2018_00110 crossref_primary_10_1016_j_mri_2018_06_020 crossref_primary_10_1177_0271678X17702156 crossref_primary_10_3389_fnagi_2018_00214 crossref_primary_10_1007_s10334_016_0567_y crossref_primary_10_1016_j_clineuro_2020_105908 crossref_primary_10_1016_j_neurad_2018_06_003 crossref_primary_10_3389_fneur_2017_00280 crossref_primary_10_1007_s10439_021_02808_w crossref_primary_10_1007_s11042_014_2395_2 crossref_primary_10_3233_JAD_200296 crossref_primary_10_3389_fneur_2021_633500 crossref_primary_10_3389_fnins_2021_711898 crossref_primary_10_1002_mrm_20443 crossref_primary_10_1136_bmjopen_2018_025219 crossref_primary_10_1002_mrm_20440 crossref_primary_10_1002_mrm_25333 crossref_primary_10_1016_j_neuroimage_2020_117246 crossref_primary_10_3389_fnagi_2016_00151 crossref_primary_10_1016_j_pscychresns_2015_03_007 crossref_primary_10_1148_rg_335125212 crossref_primary_10_1016_j_nic_2005_09_011 crossref_primary_10_1038_srep43246 crossref_primary_10_3389_fnagi_2014_00159 crossref_primary_10_1002_mrm_21779 crossref_primary_10_1016_j_acra_2010_08_002 crossref_primary_10_1007_s00234_008_0416_4 crossref_primary_10_1016_j_jneumeth_2018_06_009 crossref_primary_10_1155_2012_367516 crossref_primary_10_1016_j_neulet_2008_04_084 crossref_primary_10_1002_hbm_22891 crossref_primary_10_1016_j_nicl_2020_102434 crossref_primary_10_1148_rg_220088 crossref_primary_10_1097_RCT_0b013e318188ad99 crossref_primary_10_1016_j_pscychresns_2011_06_013 crossref_primary_10_1016_j_biopsych_2006_11_028 crossref_primary_10_1016_j_neuroimage_2007_05_024 crossref_primary_10_3390_diagnostics8020041 crossref_primary_10_1016_j_nicl_2021_102853 crossref_primary_10_1016_j_nicl_2013_09_004 crossref_primary_10_1002_jmri_28133 crossref_primary_10_1016_j_mri_2006_11_028 crossref_primary_10_1200_EDBK_25_473324 crossref_primary_10_1002_mrm_22611 crossref_primary_10_1016_j_nic_2012_02_012 crossref_primary_10_1007_s00401_016_1570_0 crossref_primary_10_1186_s12987_024_00603_y crossref_primary_10_1007_s00429_013_0593_8 crossref_primary_10_1016_j_drudis_2023_103506 crossref_primary_10_3389_fnagi_2018_00115 |
| Cites_doi | 10.1002/(SICI)1522-2586(199911)10:5<870::AID-JMRI36>3.0.CO;2-D 10.1002/ana.410210603 10.1161/01.STR.15.4.635 10.1161/01.STR.20.2.183 10.1038/jcbfm.1986.12 10.1073/pnas.89.12.5675 10.1002/mrm.10180 10.1038/jcbfm.1991.121 10.1097/00004647-199810000-00011 10.1016/0021-9681(56)90146-1 10.1159/000115248 10.1016/0165-1781(87)90028-X 10.1002/(SICI)1096-9861(19970728)384:2<312::AID-CNE10>3.0.CO;2-K 10.1016/S0301-0511(00)00059-4 10.1016/S0022-510X(00)00396-8 10.1212/WNL.34.7.855 10.1172/JCI101995 10.1038/jcbfm.1993.95 10.1136/bmj.312.7047.1654 10.1002/mrm.1910340303 10.1016/0022-510X(80)90048-9 10.1161/01.STR.5.5.630 10.1016/0006-8993(79)90349-4 10.1002/1531-8249(200001)47:1<93::AID-ANA15>3.0.CO;2-8 10.1002/hbm.460020402 10.1038/jcbfm.1987.102 10.1148/radiology.208.2.9680569 10.1126/science.278.5337.412 10.1093/brain/113.1.27 10.1002/ana.410170103 10.1001/archneur.1979.00500430040005 10.1161/01.STR.9.3.195 10.1161/01.STR.17.6.1220 10.1002/mrm.10140 |
| ContentType | Journal Article |
| Copyright | Copyright © 2004 Wiley‐Liss, Inc. Copyright 2004 Wiley-Liss, Inc. |
| Copyright_xml | – notice: Copyright © 2004 Wiley‐Liss, Inc. – notice: Copyright 2004 Wiley-Liss, Inc. |
| DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 P64 7X8 |
| DOI | 10.1002/mrm.20023 |
| DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE Engineering Research Database CrossRef |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Physics |
| EISSN | 1522-2594 |
| EndPage | 743 |
| ExternalDocumentID | 15065246 10_1002_mrm_20023 MRM20023 ark_67375_WNG_2RN7XJRD_F |
| Genre | article Research Support, Non-U.S. Gov't Journal Article Comparative Study |
| GrantInformation_xml | – fundername: Schering AG – fundername: Brain Research Trust UK – fundername: MS Society of Great Britain and Northern Ireland – fundername: Multiple Sclerosis Society grantid: 748 |
| GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHMBA AIACR AIAGR AIDQK AIDYY AIQQE AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT 24P AAHHS ACCFJ AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE RGB RWI WRC WUP AAYXX CITATION O8X CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 P64 7X8 |
| ID | FETCH-LOGICAL-c4563-c8aa19cd879065aaf62c1fb6f6b45956748064fe5ab08a207b3290413d81c123 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 386 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000220557200012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0740-3194 |
| IngestDate | Fri Sep 05 11:26:39 EDT 2025 Mon Oct 06 18:02:27 EDT 2025 Fri May 30 10:50:39 EDT 2025 Sat Nov 29 06:27:10 EST 2025 Tue Nov 18 21:28:03 EST 2025 Wed Jan 22 17:07:10 EST 2025 Sun Sep 21 06:20:59 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | Copyright 2004 Wiley-Liss, Inc. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4563-c8aa19cd879065aaf62c1fb6f6b45956748064fe5ab08a207b3290413d81c123 |
| Notes | ark:/67375/WNG-2RN7XJRD-F Schering AG istex:C9768B46CE80DF6CFF62828670FC16C8BD8E0841 MS Society of Great Britain and Northern Ireland Brain Research Trust UK ArticleID:MRM20023 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| PMID | 15065246 |
| PQID | 17829517 |
| PQPubID | 23462 |
| PageCount | 8 |
| ParticipantIDs | proquest_miscellaneous_71798885 proquest_miscellaneous_17829517 pubmed_primary_15065246 crossref_primary_10_1002_mrm_20023 crossref_citationtrail_10_1002_mrm_20023 wiley_primary_10_1002_mrm_20023_MRM20023 istex_primary_ark_67375_WNG_2RN7XJRD_F |
| PublicationCentury | 2000 |
| PublicationDate | April 2004 |
| PublicationDateYYYYMMDD | 2004-04-01 |
| PublicationDate_xml | – month: 04 year: 2004 text: April 2004 |
| PublicationDecade | 2000 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken – name: United States |
| PublicationTitle | Magnetic resonance in medicine |
| PublicationTitleAlternate | Magn. Reson. Med |
| PublicationYear | 2004 |
| Publisher | Wiley Subscription Services, Inc., A Wiley Company |
| Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company |
| References | Podreka I, Baumgartner C, Suess E, Müller C, Brücke T, Lang W, Holzner F, Steiner M, Deecke L. Quantification of regional cerebral blood flow with IMP-SPECT. Stroke 1989; 20: 183-191. Alsop DC, Detre JA. Multisection cerebral blood flow MR imaging with continuous arterial spin labelling. Radiology 1998; 208: 410-416. Morrison JH, Hof PR. Life and death of neurons in the aging brain. Science 1997; 278: 412-419. Pantano P, Baron J, Lebrun-Grandié P, Duquesnoy N, Bousser M, Comar D. Regional cerebral blood flow and oxygen consumption in human aging. Stroke 1984; 15: 635-641. Gottstein U, Held K. Effects of aging on cerebral circulation and metabolism in man. Acta Neurol Scand 1979; 72: 54-55. Leenders KL, Perani D, Lammertsma AA, Heather JD, Buckingham P, Healy MJR, Gibbs JM, Wise RJS, Hatazawa J, Herold S, Beaney RP, Brooks DJ, Spinks T, Rhodes C, Frackowiak RSJ, Jones T. Cerebral blood flow, blood volume and oxygen utilisation. Normal values and effects of age. Brain 1990; 113: 27-47. Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff RM, Poncelet BP, Kennedy DN, Hoppel BE, Cohen MS, Turner R, Cheng HM, Brady TJ, Rosen BR. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci USA 1992; 89: 5675-5679. Schreiber WG, Gückel F, Stritzke P, Schmiedek P, Schwartz A, Brix G. Cerebral blood flow and cerebrovascular reserve capacity: estimation by dynamic magnetic resonance imaging. J Cereb Blood Flow Metab 1998; 18: 1143-1156. Yen YF, Field AS, Martin EM, Ari N, Burdette JH, Moody DM, Takahashi AM. Test-retest reproducibility of quantitative CBF measurements using FAIR perfusion MRI and acetazolamide challenge. Magn Reson Med 2002; 47: 921-928. Yamaguchi T, Kanno I, Uemura K, Shishido F, Inugami A, Ogawa T, Murakami M, Suzuki K. Reduction in regional cerebral metabolic rate of oxygen during human aging. Stroke 1986; 17: 1220-1228. Shaw T, Meyer JS, Mortel K, Cutaia M, Sakai F, Yamaguchi F. Effects of normal aging, sex and risk factors for stoke on regional cerebral blood flow (rCBF) in normal volunteers. Acta Neurol Scand 1979; 60: 462-463. Terry HD, DeTeresa R, Hansen LA. Neocortical cell counts in normal adult aging. Ann Neurol 1987; 21: 530-539. Kim SG. Quantification of relative blood flow change by flow-sensitive alternating inversion recovery (FAIR) technique: application to functional mapping. Magn Reson Med 1995; 34: 293-301. Bentourika M, Bol A, Ivanoiu A, Labar D, Sibomana M, Coppens A, Michel C, Cosnard G, De Volder AG. Comparison of regional cerebral blood flow and glucose metabolism in the normal brain: effect of aging. J Neurol Sci 2000; 181: 19-28. Parkes LM, Tofts PS. Improved accuracy of human cerebral blood perfusion measurements using arterial spin labeling: accounting for capillary water permeability. Magn Reson Med 2002; 48: 27-41. Devous MD, Stokely EM, Chehabi HH, Bonte FJ. Normal distribution of regional cerebral blood flow measured by dynamic single-photon emission tomography. J Cereb Blood Flow Metab 1986; 6: 95-104. Kety S. Human cerebral blood flow and oxygen consumption as related to aging. J Chronic Dis 1956; 3: 478-486. Grady CL. Functional brain imaging and age-related changes in cognition. Biol Psychol 2000; 54: 259-281. Huttenlocher PR. Synaptic density in human frontal cortex-developmental changes and effects of aging. Brain Res 1979; 163: 195-205. Alsop DC, Detre JA, Grossman M. Assessment of cerebral blood flow in Alzheimer's disease by spin-labeled magnetic resonance imaging. Ann Neurol 2000; 47: 93-100. Naritomi H, Meyer JS, Sakai F, Yamaguchi F, Shaw T. Effects of advancing age on regional cerebral blood flow. Arch Neurol 1979; 36: 410-416. Detre JA, Samuels OB, Alsop DC, Gonzalez-At JB, Kasner SE, Raps EC. Noninvasive magnetic resonance imaging evaluation of cerebral blood flow with acetazolamide challenge in patients with cerebrovascular stenosis. Magn Reson Imaging 1999; 10: 870-875. Meyer JS, Ishihara N, Deshmukh VD, Naritomi H, Sakai F, Hsu MC, Pollack P. Improved metod for noninvasive measurement of regional blood flow by 133Xenon inhalation. Part I: description of method and normal values obtained in healthy volunteers. Stroke 1978; 9: 195-205. Pakkenberg B, Gundersen HJG. Neocortical neuron number in humans: effect of sex and age. J Comp Neurol 1997; 384: 312-320. Shaw T, Mortel K, Meyer J, Rogers R, Hardenberg J, Cutaia M. Cerebral blood flow changes in benign aging and cerebrovascular disease. Neurology 1984; 34: 855-862. Creasey H, Rapoport SI. The aging human brain. Ann Neurol 1985; 17: 2-10. Bland JM, Altman DG. Measurement error. BMJ 1996; 312: 1654. Herscovitch P, Raichle ME, Kilbourn MR, Welch MJ. Positron emission tomographic measurement of cerebral blood flow and permeability-surface area product of water using [15O]water and [11C]butanol. J Cereb Blood Flow Metab 1987; 7: 527-542. Baxter LR, Mazziotta JC, Phelps ME, Selin CE, Guze BH, Fairbanks L. Cerebral glucose metabolic rates in normal human females versus normal males. Psychol Res 1987; 21: 237-245. Sokoloff L. Cerebral circulatory and metabolic changes associated with aging. Res Publ Assoc Res Nerv Ment Dis 1966. Lenzi GL, Frackowiak RSJ, Jones T, Heather JD, Lammertsma AA, Rhodes CG, Pozzilli C. CMRO2 and CBF by the oxygen-15 inhalation technique. Eur Neurol 1981; 20: 285-290. Kety S, Schmidt C. The effects of altered arterial tension of carbon dioxide and oxygen on cerebral blood flow and cerebral oxygen consumption of normal young men. J Clin Invest 1948; 27: 484-492. Grubb R, Raichle M, Eichling J, Ter-Pogossian M. The effects of changes in paco2 on cerebral blood volume, blood flow, and vascular mean transit time. Stroke 1974; 5: 630-639. Martin AJ, Friston KJ, Colebatch JG, Frackowiak RSJ. Decreases in regional cerebral blood flow with normal aging. J Cereb Blood Flow Metab 1991; 11: 684-689. Henderson G, Tomlinson BE, Gibson PH. Cell counts in human cerebral cortex in normal adults throughout life using an image analysing computer. J Neurol Sci 1980; 46: 113-136. Friston KJ, Holmes AP, Worsley KJ, Poline J-P, Frith CD, Frackowiak RSJ. Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Mapp 1995; 2: 189-210. Matthew E, Andreason P, Carson RE, Herscovitch P, Pettigrew K, Cohen R, King C, Johanson CE, Paul SM. Reproducibility of resting cerebral blood flow measurements with H215O positron emission tomography in humans. J Cereb Blood Flow Metab 1993; 13: 748-754. 1997; 278 1989; 20 1979; 36 2000; 47 1991; 11 1980; 46 1995; 34 1987; 7 1986; 17 2002 1995; 2 1978; 9 1981; 20 1974; 5 1979; 72 1993; 13 1998; 18 1985; 17 2002; 47 2002; 48 1987; 21 2001 1984; 15 1997; 384 2000; 54 1984; 34 1986; 6 1999; 10 1998; 208 1990; 113 1996; 312 1979; 163 1992; 89 1979; 60 1956; 3 2000; 181 1966 1948; 27 e_1_2_7_5_2 e_1_2_7_4_2 e_1_2_7_3_2 e_1_2_7_2_2 e_1_2_7_9_2 e_1_2_7_8_2 e_1_2_7_7_2 e_1_2_7_6_2 e_1_2_7_19_2 e_1_2_7_18_2 e_1_2_7_17_2 e_1_2_7_15_2 e_1_2_7_14_2 e_1_2_7_40_2 e_1_2_7_13_2 e_1_2_7_41_2 e_1_2_7_12_2 e_1_2_7_11_2 e_1_2_7_10_2 e_1_2_7_26_2 e_1_2_7_27_2 e_1_2_7_28_2 Gottstein U (e_1_2_7_33_2) 1979; 72 Sokoloff L (e_1_2_7_29_2) 1966 e_1_2_7_25_2 e_1_2_7_24_2 e_1_2_7_30_2 e_1_2_7_23_2 e_1_2_7_31_2 e_1_2_7_22_2 e_1_2_7_32_2 e_1_2_7_21_2 e_1_2_7_20_2 e_1_2_7_34_2 e_1_2_7_35_2 e_1_2_7_36_2 e_1_2_7_37_2 e_1_2_7_38_2 e_1_2_7_39_2 Shaw T (e_1_2_7_16_2) 1979; 60 |
| References_xml | – reference: Bland JM, Altman DG. Measurement error. BMJ 1996; 312: 1654. – reference: Alsop DC, Detre JA, Grossman M. Assessment of cerebral blood flow in Alzheimer's disease by spin-labeled magnetic resonance imaging. Ann Neurol 2000; 47: 93-100. – reference: Pantano P, Baron J, Lebrun-Grandié P, Duquesnoy N, Bousser M, Comar D. Regional cerebral blood flow and oxygen consumption in human aging. Stroke 1984; 15: 635-641. – reference: Schreiber WG, Gückel F, Stritzke P, Schmiedek P, Schwartz A, Brix G. Cerebral blood flow and cerebrovascular reserve capacity: estimation by dynamic magnetic resonance imaging. J Cereb Blood Flow Metab 1998; 18: 1143-1156. – reference: Friston KJ, Holmes AP, Worsley KJ, Poline J-P, Frith CD, Frackowiak RSJ. Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Mapp 1995; 2: 189-210. – reference: Terry HD, DeTeresa R, Hansen LA. Neocortical cell counts in normal adult aging. Ann Neurol 1987; 21: 530-539. – reference: Bentourika M, Bol A, Ivanoiu A, Labar D, Sibomana M, Coppens A, Michel C, Cosnard G, De Volder AG. Comparison of regional cerebral blood flow and glucose metabolism in the normal brain: effect of aging. J Neurol Sci 2000; 181: 19-28. – reference: Alsop DC, Detre JA. Multisection cerebral blood flow MR imaging with continuous arterial spin labelling. Radiology 1998; 208: 410-416. – reference: Huttenlocher PR. Synaptic density in human frontal cortex-developmental changes and effects of aging. Brain Res 1979; 163: 195-205. – reference: Grubb R, Raichle M, Eichling J, Ter-Pogossian M. The effects of changes in paco2 on cerebral blood volume, blood flow, and vascular mean transit time. Stroke 1974; 5: 630-639. – reference: Yamaguchi T, Kanno I, Uemura K, Shishido F, Inugami A, Ogawa T, Murakami M, Suzuki K. Reduction in regional cerebral metabolic rate of oxygen during human aging. Stroke 1986; 17: 1220-1228. – reference: Baxter LR, Mazziotta JC, Phelps ME, Selin CE, Guze BH, Fairbanks L. Cerebral glucose metabolic rates in normal human females versus normal males. Psychol Res 1987; 21: 237-245. – reference: Kim SG. Quantification of relative blood flow change by flow-sensitive alternating inversion recovery (FAIR) technique: application to functional mapping. Magn Reson Med 1995; 34: 293-301. – reference: Detre JA, Samuels OB, Alsop DC, Gonzalez-At JB, Kasner SE, Raps EC. Noninvasive magnetic resonance imaging evaluation of cerebral blood flow with acetazolamide challenge in patients with cerebrovascular stenosis. Magn Reson Imaging 1999; 10: 870-875. – reference: Leenders KL, Perani D, Lammertsma AA, Heather JD, Buckingham P, Healy MJR, Gibbs JM, Wise RJS, Hatazawa J, Herold S, Beaney RP, Brooks DJ, Spinks T, Rhodes C, Frackowiak RSJ, Jones T. Cerebral blood flow, blood volume and oxygen utilisation. Normal values and effects of age. Brain 1990; 113: 27-47. – reference: Henderson G, Tomlinson BE, Gibson PH. Cell counts in human cerebral cortex in normal adults throughout life using an image analysing computer. J Neurol Sci 1980; 46: 113-136. – reference: Matthew E, Andreason P, Carson RE, Herscovitch P, Pettigrew K, Cohen R, King C, Johanson CE, Paul SM. Reproducibility of resting cerebral blood flow measurements with H215O positron emission tomography in humans. J Cereb Blood Flow Metab 1993; 13: 748-754. – reference: Meyer JS, Ishihara N, Deshmukh VD, Naritomi H, Sakai F, Hsu MC, Pollack P. Improved metod for noninvasive measurement of regional blood flow by 133Xenon inhalation. Part I: description of method and normal values obtained in healthy volunteers. Stroke 1978; 9: 195-205. – reference: Podreka I, Baumgartner C, Suess E, Müller C, Brücke T, Lang W, Holzner F, Steiner M, Deecke L. Quantification of regional cerebral blood flow with IMP-SPECT. Stroke 1989; 20: 183-191. – reference: Herscovitch P, Raichle ME, Kilbourn MR, Welch MJ. Positron emission tomographic measurement of cerebral blood flow and permeability-surface area product of water using [15O]water and [11C]butanol. J Cereb Blood Flow Metab 1987; 7: 527-542. – reference: Grady CL. Functional brain imaging and age-related changes in cognition. Biol Psychol 2000; 54: 259-281. – reference: Pakkenberg B, Gundersen HJG. Neocortical neuron number in humans: effect of sex and age. J Comp Neurol 1997; 384: 312-320. – reference: Naritomi H, Meyer JS, Sakai F, Yamaguchi F, Shaw T. Effects of advancing age on regional cerebral blood flow. Arch Neurol 1979; 36: 410-416. – reference: Shaw T, Meyer JS, Mortel K, Cutaia M, Sakai F, Yamaguchi F. Effects of normal aging, sex and risk factors for stoke on regional cerebral blood flow (rCBF) in normal volunteers. Acta Neurol Scand 1979; 60: 462-463. – reference: Sokoloff L. Cerebral circulatory and metabolic changes associated with aging. Res Publ Assoc Res Nerv Ment Dis 1966. – reference: Kety S. Human cerebral blood flow and oxygen consumption as related to aging. J Chronic Dis 1956; 3: 478-486. – reference: Martin AJ, Friston KJ, Colebatch JG, Frackowiak RSJ. Decreases in regional cerebral blood flow with normal aging. J Cereb Blood Flow Metab 1991; 11: 684-689. – reference: Parkes LM, Tofts PS. Improved accuracy of human cerebral blood perfusion measurements using arterial spin labeling: accounting for capillary water permeability. Magn Reson Med 2002; 48: 27-41. – reference: Shaw T, Mortel K, Meyer J, Rogers R, Hardenberg J, Cutaia M. Cerebral blood flow changes in benign aging and cerebrovascular disease. Neurology 1984; 34: 855-862. – reference: Lenzi GL, Frackowiak RSJ, Jones T, Heather JD, Lammertsma AA, Rhodes CG, Pozzilli C. CMRO2 and CBF by the oxygen-15 inhalation technique. Eur Neurol 1981; 20: 285-290. – reference: Creasey H, Rapoport SI. The aging human brain. Ann Neurol 1985; 17: 2-10. – reference: Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff RM, Poncelet BP, Kennedy DN, Hoppel BE, Cohen MS, Turner R, Cheng HM, Brady TJ, Rosen BR. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci USA 1992; 89: 5675-5679. – reference: Gottstein U, Held K. Effects of aging on cerebral circulation and metabolism in man. Acta Neurol Scand 1979; 72: 54-55. – reference: Yen YF, Field AS, Martin EM, Ari N, Burdette JH, Moody DM, Takahashi AM. Test-retest reproducibility of quantitative CBF measurements using FAIR perfusion MRI and acetazolamide challenge. Magn Reson Med 2002; 47: 921-928. – reference: Morrison JH, Hof PR. Life and death of neurons in the aging brain. Science 1997; 278: 412-419. – reference: Kety S, Schmidt C. The effects of altered arterial tension of carbon dioxide and oxygen on cerebral blood flow and cerebral oxygen consumption of normal young men. J Clin Invest 1948; 27: 484-492. – reference: Devous MD, Stokely EM, Chehabi HH, Bonte FJ. Normal distribution of regional cerebral blood flow measured by dynamic single-photon emission tomography. J Cereb Blood Flow Metab 1986; 6: 95-104. – volume: 21 start-page: 237 year: 1987 end-page: 245 article-title: Cerebral glucose metabolic rates in normal human females versus normal males publication-title: Psychol Res – volume: 72 start-page: 54 year: 1979 end-page: 55 article-title: Effects of aging on cerebral circulation and metabolism in man publication-title: Acta Neurol Scand – volume: 7 start-page: 527 year: 1987 end-page: 542 article-title: Positron emission tomographic measurement of cerebral blood flow and permeability‐surface area product of water using [ O]water and [ C]butanol publication-title: J Cereb Blood Flow Metab – volume: 48 start-page: 27 year: 2002 end-page: 41 article-title: Improved accuracy of human cerebral blood perfusion measurements using arterial spin labeling: accounting for capillary water permeability publication-title: Magn Reson Med – volume: 34 start-page: 293 year: 1995 end-page: 301 article-title: Quantification of relative blood flow change by flow‐sensitive alternating inversion recovery (FAIR) technique: application to functional mapping publication-title: Magn Reson Med – volume: 15 start-page: 635 year: 1984 end-page: 641 article-title: Regional cerebral blood flow and oxygen consumption in human aging publication-title: Stroke – volume: 60 start-page: 462 year: 1979 end-page: 463 article-title: Effects of normal aging, sex and risk factors for stoke on regional cerebral blood flow (rCBF) in normal volunteers publication-title: Acta Neurol Scand – volume: 36 start-page: 410 year: 1979 end-page: 416 article-title: Effects of advancing age on regional cerebral blood flow publication-title: Arch Neurol – volume: 17 start-page: 1220 year: 1986 end-page: 1228 article-title: Reduction in regional cerebral metabolic rate of oxygen during human aging publication-title: Stroke – volume: 6 start-page: 95 year: 1986 end-page: 104 article-title: Normal distribution of regional cerebral blood flow measured by dynamic single‐photon emission tomography publication-title: J Cereb Blood Flow Metab – volume: 3 start-page: 478 year: 1956 end-page: 486 article-title: Human cerebral blood flow and oxygen consumption as related to aging publication-title: J Chronic Dis – volume: 384 start-page: 312 year: 1997 end-page: 320 article-title: Neocortical neuron number in humans: effect of sex and age publication-title: J Comp Neurol – volume: 21 start-page: 530 year: 1987 end-page: 539 article-title: Neocortical cell counts in normal adult aging publication-title: Ann Neurol – volume: 13 start-page: 748 year: 1993 end-page: 754 article-title: Reproducibility of resting cerebral blood flow measurements with H O positron emission tomography in humans publication-title: J Cereb Blood Flow Metab – volume: 17 start-page: 2 year: 1985 end-page: 10 article-title: The aging human brain publication-title: Ann Neurol – year: 1966 article-title: Cerebral circulatory and metabolic changes associated with aging publication-title: Res Publ Assoc Res Nerv Ment Dis – volume: 9 start-page: 195 year: 1978 end-page: 205 article-title: Improved metod for noninvasive measurement of regional blood flow by 133Xenon inhalation. Part I: description of method and normal values obtained in healthy volunteers publication-title: Stroke – start-page: 426 year: 2002 – volume: 208 start-page: 410 year: 1998 end-page: 416 article-title: Multisection cerebral blood flow MR imaging with continuous arterial spin labelling publication-title: Radiology – volume: 46 start-page: 113 year: 1980 end-page: 136 article-title: Cell counts in human cerebral cortex in normal adults throughout life using an image analysing computer publication-title: J Neurol Sci – volume: 163 start-page: 195 year: 1979 end-page: 205 article-title: Synaptic density in human frontal cortex—developmental changes and effects of aging publication-title: Brain Res – volume: 5 start-page: 630 year: 1974 end-page: 639 article-title: The effects of changes in paco2 on cerebral blood volume, blood flow, and vascular mean transit time publication-title: Stroke – start-page: 1569 year: 2001 – volume: 34 start-page: 855 year: 1984 end-page: 862 article-title: Cerebral blood flow changes in benign aging and cerebrovascular disease publication-title: Neurology – volume: 89 start-page: 5675 year: 1992 end-page: 5679 article-title: Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation publication-title: Proc Natl Acad Sci USA – volume: 278 start-page: 412 year: 1997 end-page: 419 article-title: Life and death of neurons in the aging brain publication-title: Science – volume: 11 start-page: 684 year: 1991 end-page: 689 article-title: Decreases in regional cerebral blood flow with normal aging publication-title: J Cereb Blood Flow Metab – volume: 20 start-page: 285 year: 1981 end-page: 290 article-title: CMRO2 and CBF by the oxygen‐15 inhalation technique publication-title: Eur Neurol – volume: 47 start-page: 921 year: 2002 end-page: 928 article-title: Test‐retest reproducibility of quantitative CBF measurements using FAIR perfusion MRI and acetazolamide challenge publication-title: Magn Reson Med – volume: 2 start-page: 189 year: 1995 end-page: 210 article-title: Statistical parametric maps in functional imaging: a general linear approach publication-title: Hum Brain Mapp – volume: 20 start-page: 183 year: 1989 end-page: 191 article-title: Quantification of regional cerebral blood flow with IMP‐SPECT publication-title: Stroke – volume: 181 start-page: 19 year: 2000 end-page: 28 article-title: Comparison of regional cerebral blood flow and glucose metabolism in the normal brain: effect of aging publication-title: J Neurol Sci – start-page: 1336 year: 2002 – volume: 47 start-page: 93 year: 2000 end-page: 100 article-title: Assessment of cerebral blood flow in Alzheimer's disease by spin‐labeled magnetic resonance imaging publication-title: Ann Neurol – volume: 113 start-page: 27 year: 1990 end-page: 47 article-title: Cerebral blood flow, blood volume and oxygen utilisation. Normal values and effects of age publication-title: Brain – volume: 54 start-page: 259 year: 2000 end-page: 281 article-title: Functional brain imaging and age‐related changes in cognition publication-title: Biol Psychol – volume: 312 start-page: 1654 year: 1996 article-title: Measurement error publication-title: BMJ – volume: 10 start-page: 870 year: 1999 end-page: 875 article-title: Noninvasive magnetic resonance imaging evaluation of cerebral blood flow with acetazolamide challenge in patients with cerebrovascular stenosis publication-title: Magn Reson Imaging – volume: 18 start-page: 1143 year: 1998 end-page: 1156 article-title: Cerebral blood flow and cerebrovascular reserve capacity: estimation by dynamic magnetic resonance imaging publication-title: J Cereb Blood Flow Metab – volume: 27 start-page: 484 year: 1948 end-page: 492 article-title: The effects of altered arterial tension of carbon dioxide and oxygen on cerebral blood flow and cerebral oxygen consumption of normal young men publication-title: J Clin Invest – ident: e_1_2_7_4_2 doi: 10.1002/(SICI)1522-2586(199911)10:5<870::AID-JMRI36>3.0.CO;2-D – ident: e_1_2_7_32_2 doi: 10.1002/ana.410210603 – ident: e_1_2_7_8_2 doi: 10.1161/01.STR.15.4.635 – ident: e_1_2_7_14_2 doi: 10.1161/01.STR.20.2.183 – ident: e_1_2_7_10_2 doi: 10.1038/jcbfm.1986.12 – ident: e_1_2_7_41_2 – ident: e_1_2_7_2_2 doi: 10.1073/pnas.89.12.5675 – ident: e_1_2_7_18_2 doi: 10.1002/mrm.10180 – ident: e_1_2_7_35_2 – ident: e_1_2_7_7_2 doi: 10.1038/jcbfm.1991.121 – ident: e_1_2_7_23_2 doi: 10.1097/00004647-199810000-00011 – volume: 72 start-page: 54 year: 1979 ident: e_1_2_7_33_2 article-title: Effects of aging on cerebral circulation and metabolism in man publication-title: Acta Neurol Scand – ident: e_1_2_7_27_2 doi: 10.1016/0021-9681(56)90146-1 – ident: e_1_2_7_13_2 doi: 10.1159/000115248 – ident: e_1_2_7_37_2 doi: 10.1016/0165-1781(87)90028-X – ident: e_1_2_7_25_2 doi: 10.1002/(SICI)1096-9861(19970728)384:2<312::AID-CNE10>3.0.CO;2-K – ident: e_1_2_7_36_2 doi: 10.1016/S0301-0511(00)00059-4 – ident: e_1_2_7_15_2 – ident: e_1_2_7_9_2 doi: 10.1016/S0022-510X(00)00396-8 – ident: e_1_2_7_28_2 doi: 10.1212/WNL.34.7.855 – ident: e_1_2_7_39_2 doi: 10.1172/JCI101995 – ident: e_1_2_7_21_2 doi: 10.1038/jcbfm.1993.95 – ident: e_1_2_7_20_2 doi: 10.1136/bmj.312.7047.1654 – ident: e_1_2_7_3_2 doi: 10.1002/mrm.1910340303 – ident: e_1_2_7_24_2 doi: 10.1016/0022-510X(80)90048-9 – volume: 60 start-page: 462 year: 1979 ident: e_1_2_7_16_2 article-title: Effects of normal aging, sex and risk factors for stoke on regional cerebral blood flow (rCBF) in normal volunteers publication-title: Acta Neurol Scand – year: 1966 ident: e_1_2_7_29_2 article-title: Cerebral circulatory and metabolic changes associated with aging publication-title: Res Publ Assoc Res Nerv Ment Dis – ident: e_1_2_7_40_2 doi: 10.1161/01.STR.5.5.630 – ident: e_1_2_7_31_2 doi: 10.1016/0006-8993(79)90349-4 – ident: e_1_2_7_5_2 doi: 10.1002/1531-8249(200001)47:1<93::AID-ANA15>3.0.CO;2-8 – ident: e_1_2_7_19_2 doi: 10.1002/hbm.460020402 – ident: e_1_2_7_22_2 doi: 10.1038/jcbfm.1987.102 – ident: e_1_2_7_17_2 doi: 10.1148/radiology.208.2.9680569 – ident: e_1_2_7_30_2 doi: 10.1126/science.278.5337.412 – ident: e_1_2_7_6_2 doi: 10.1093/brain/113.1.27 – ident: e_1_2_7_26_2 doi: 10.1002/ana.410170103 – ident: e_1_2_7_11_2 doi: 10.1001/archneur.1979.00500430040005 – ident: e_1_2_7_12_2 doi: 10.1161/01.STR.9.3.195 – ident: e_1_2_7_34_2 doi: 10.1161/01.STR.17.6.1220 – ident: e_1_2_7_38_2 doi: 10.1002/mrm.10140 |
| SSID | ssj0009974 |
| Score | 2.3233867 |
| Snippet | Before meaningful conclusions can be drawn from clinical measures of cerebral blood perfusion, the precision of the measurement must be determined and set in... |
| SourceID | proquest pubmed crossref wiley istex |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 736 |
| SubjectTerms | Adult age Age Factors Aged arterial spin labeling Brain - blood supply Cerebral Arteries - physiology cerebral perfusion Cerebrovascular Circulation - physiology Female Follow-Up Studies Frontal Lobe - blood supply gender Humans Image Enhancement - methods Linear Models Magnetic Resonance Imaging - methods Male Middle Aged Parietal Lobe - blood supply reproducibility Reproducibility of Results Sex Factors Spin Labels |
| Title | Normal cerebral perfusion measurements using arterial spin labeling: Reproducibility, stability, and age and gender effects |
| URI | https://api.istex.fr/ark:/67375/WNG-2RN7XJRD-F/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.20023 https://www.ncbi.nlm.nih.gov/pubmed/15065246 https://www.proquest.com/docview/17829517 https://www.proquest.com/docview/71798885 |
| Volume | 51 |
| WOSCitedRecordID | wos000220557200012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1522-2594 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009974 issn: 0740-3194 databaseCode: DRFUL dateStart: 19990101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1522-2594 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009974 issn: 0740-3194 databaseCode: WIN dateStart: 19990101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9tKyBe-BiwlY9hIYR4WLTUcWIbnhCjfIhGqBpa3yzHsaeJLquSFYH45zk7SatJm4TEUxzpIjnnO9_P9t3PAC-lzYRzmY0kpTZipbBRYdGvCuGM5FqWUsfhsgme52I2k9824G1fC9PyQ6w23LxnhPnaO7gumoM1aehZHQrJabIJA19UhSuvweF0_P3rmnNXtiTMnPmpRrKeWCimB6uPL4Wjgdfsr6uw5mXoGmLP-O5_9foe3OkgJ3nX2sh92LDVNtyadIfq23AzZIGa5gH8yT2CnRNja3-ePCcLW7ul308jZ-u9xIb4ZPkTErJB0XxJszitCFpTKG1_QxDTBxrZNu_29z5BANo3dVUSnMHC8yTcYke6jJKHcDT-cPT-U9TdzhAZBF1JZITWI2lKwSXCGK1dRs3IFZnLCpbiqoszgXDH2VQXsdA05kVCZYwxsxQjg_HyEWxV55XdBcJKK5jVDGOpZrGLpbFJlhRlVsZMl5kbwut-jJTpmMv9BRpz1XIuU4VaVUGrQ3ixEl20dB1XCb0KA72S0PUPn9_GU3Wcf1R0mvPZl-mhGg_heW8JCr3OH6Xoyp4vGzVCYIXYlF8vwQMTnEiHsNOa0Lo_KeqLsgx_K1jK9R1Vk-kkNB7_u-gTuL1OLnoKWxf10j6DG-bnxWlT78Emn4m9zlHw7fhz_heTdxdi |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-Nlq8XPgaD8jULIcQD0VLH8QfiBTHKgDZCVSf6ZjmOPU3rsipZEYh_HttJWk3aJCSe4oeL5JzvfL-cz78DeCUM5dZSEwmMTUQKbqLcOL_KudWCKVEIFYdmEyzL-Hwuvm_B--4uTMMPsU64ec8I-7V3cJ-Q3tuwhp5W4SY5Tq5Bn9CE8R7096ejw_GGdFc0LMyM-L1GkI5ZKMZ765cvxKO-V-2vy8DmRewags_o7v9N-x7caUEn-tBYyX3YMuU23Jy0x-rbcCPUger6AfzJPIZdIG0qf6K8QEtT2ZXPqKHTTTaxRr5c_giFelBnwKheHpfI2VO43P4OOVQfiGSbytvfb5GDoN1QlQVye1h4HoU-dqitKXkIs9Gn2ceDqO3PEGkHu5JIc6WGQhecCQdklLIU66HNqaU5Sd1_FyPcAR5rUpXHXOGY5QkWsYuaBR9qFzF3oFeeleYxIFIYTowiLpoqEttYaJPQJC9oERNVUDuAN90iSd1yl_sWGgvZsC5j6bQqg1YH8HItumwIOy4Teh1Wei2hqhNf4cZS-SP7LPE0Y_Ov0305GsBuZwrS-Z0_TFGlOVvVcuiglUOn7GoJFrjgeDqAR40NbeaTOn1hQt1nBVO5eqJyMp2EwZN_F92FWwezyViOv2TfnsLtTanRM-idVyvzHK7rn-fHdfWi9Ze_GQQZWw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7SpA259JE-sn1FlFJ6iIlXli2p9FKabpu2a8ISyN6ELEshdOMs3mxp6Z_vSLbXBBIo9GQdxiBLM5rP0qdvAF5LmwnnMhtJSm3ESmGjwmJcFcIZybUspY5DsQme52I6lUdr8L67C9PoQ6w23HxkhPXaB7idl26_Vw09r8NNcprcgg2GONwTuk4O815yVzYazJz5lUayTlcopvurV69kow0_sL-ug5pXkWtIPaN7_9fp-3C3hZzkQ-MjD2DNVtuwOW4P1bfhTmCBmsVD-JN7BDsjxtb-PHlG5rZ2S7-fRs77vcQF8WT5UxLYoOi-ZDE_qwh6U7ja_o4gpg8ysg3v9vceQQDaNXVVElzBwvM0VLEjLaPkERyPPh1__BK11Rkig6AriYzQeihNKbhEGKO1y6gZuiJzWcFS_OviTCDccTbVRSw0jXmRUBljzizF0GC-fAzr1UVld4Cw0gpmNcNcqlnsYmlskiVFmZUx02XmBvC2myRlWuVyX0BjphrNZapwVFUY1QG8WpnOG7mO64zehJleWej6h-e38VSd5J8VneR8-nVyoEYD2O1cQWHU-aMUXdmL5UINEVghNuU3W_CgBCfSATxpfKjvT4rjRVmGnxVc5eaOqvFkHBpP_910FzaPDkbq-2H-7Rls9Tyj57B-WS_tC7htfl6eLeqXIVj-AjE2F7E |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Normal+cerebral+perfusion+measurements+using+arterial+spin+labeling%3A+Reproducibility%2C+stability%2C+and+age+and+gender+effects&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Parkes%2C+Laura+M.&rft.au=Rashid%2C+Waqar&rft.au=Chard%2C+Declan+T.&rft.au=Tofts%2C+Paul+S.&rft.date=2004-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=51&rft.issue=4&rft.spage=736&rft.epage=743&rft_id=info:doi/10.1002%2Fmrm.20023&rft.externalDBID=10.1002%252Fmrm.20023&rft.externalDocID=MRM20023 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |