Estimating cell frequencies under inequality constraints based on the Kullback-Leibler information
This article considers the problem of estimating the cell frequencies in a contingency table under inequality constraints. Algorithms are proposed for cell frequency estimation via minimizing the Kullback–Leibler distance subject to inequality constraints. The proposed algorithms are shown to be sim...
Saved in:
| Published in: | Statistica Neerlandica Vol. 66; no. 2; pp. 203 - 216 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Oxford, UK
Blackwell Publishing Ltd
01.05.2012
Netherlands Society for Statistics and Operations Research |
| Series: | Statistica Neerlandica |
| Subjects: | |
| ISSN: | 0039-0402, 1467-9574 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This article considers the problem of estimating the cell frequencies in a contingency table under inequality constraints. Algorithms are proposed for cell frequency estimation via minimizing the Kullback–Leibler distance subject to inequality constraints. The proposed algorithms are shown to be simple, easy to be used, fast, and reliable. Theorems are derived to guarantee the convergence of the algorithms. Applications and extensions of the algorithms are provided for more general problems than contingency table. The R programs that implement the proposed algorithms are presented in Appendix B. |
|---|---|
| AbstractList | This article considers the problem of estimating the cell frequencies in a contingency table under inequality constraints. Algorithms are proposed for cell frequency estimation via minimizing the Kullback–Leibler distance subject to inequality constraints. The proposed algorithms are shown to be simple, easy to be used, fast, and reliable. Theorems are derived to guarantee the convergence of the algorithms. Applications and extensions of the algorithms are provided for more general problems than contingency table. The R programs that implement the proposed algorithms are presented in Appendix B. This article considers the problem of estimating the cell frequencies in a contingency table under inequality constraints. Algorithms are proposed for cell frequency estimation via minimizing the Kullback-Leibler distance subject to inequality constraints. The proposed algorithms are shown to be simple, easy to be used, fast, and reliable. Theorems are derived to guarantee the convergence of the algorithms. Applications and extensions of the algorithms are provided for more general problems than contingency table. The R programs that implement the proposed algorithms are presented in Appendix B. [PUBLICATION ABSTRACT] |
| Author | Fu, Lianyan Gao, Wei Shi, Ning-Zhong |
| Author_xml | – sequence: 1 givenname: Lianyan surname: Fu fullname: Fu, Lianyan organization: School of Economics, Liaoning University, Liaoning, China and School of Mathematics and Statistics, Jilin, China, Northeast Normal University – sequence: 2 givenname: Wei surname: Gao fullname: Gao, Wei organization: School of Mathematics and Statistics, Jilin, China Northeast Normal University – sequence: 3 givenname: Ning-Zhong surname: Shi fullname: Shi, Ning-Zhong organization: School of Mathematics and Statistics, Jilin, China Northeast Normal University |
| BackLink | http://econpapers.repec.org/article/blastanee/v_3a66_3ay_3a2012_3ai_3a2_3ap_3a203-216.htm$$DView record in RePEc |
| BookMark | eNqNUcFu1DAQjVCR2Bb-IeLEJcGOY3t94FCt2kK7KkJbxHFkOxPqbdZZ7GzZ_fs6G7QHLmBpPKPxe096fufZme89ZllOSUnT-bguaS1kobisy4pQWhLCKSv3r7LZ6eEsmxHCVEFqUr3JzmNcE0KlqsUsM1dxcBs9OP8zt9h1eRvw1w69dRjznW8w5M6nje7ccMht7-MQtPNDzI2O2OS9z4dHzO92XWe0fSqW6Ex3JLV9GHV7_zZ73eou4rs__SL7fn31sPhcLL_efFlcLgtbc8EKLRGlobaVKBgzrEXGtBSUcY1NY6xuhaLKioYbXksxN5TJqjVNy21LuEJ2kX2YdLehTxbiABsXR0_aY7-LQKWoaMVqJf8NJVWlKGMVS9D3f0HX_S74ZASUYvVc1Fwl0O0ECrhFC9uQvjQcwHQ6DkkS4RmYFiJdh1Qppio1N46ptscVg4oKeBw2SWw-idnQxxiwPelRAmPmsIYxWhijhTFzOGYO-0T9NFF_uw4P_82D1cPlfZoSv5j4Lg64P_F1eAIhmeTw4_4Grldzvrj9JmDFXgD_dcQT |
| Cites_doi | 10.1214/aoms/1177692379 10.1016/j.csda.2009.10.017 10.1214/aos/1176347279 10.1093/biomet/55.1.179 10.1103/PhysRev.106.620 10.1016/S0304-4076(01)00110-5 10.1111/j.2517-6161.1962.tb00457.x 10.1214/aoms/1177698249 10.1002/0471249688 10.1016/S0378-3758(02)00243-4 10.1214/aos/1176324703 10.1007/BF02530498 10.1214/009053606000000056 10.1214/aop/1176996454 10.1103/PhysRev.108.171 10.2307/2531643 10.1016/0167-7152(93)90257-J 10.1214/aoms/1177731829 10.1137/0305003 |
| ContentType | Journal Article |
| Copyright | 2011 The Authors. Statistica Neerlandica © 2011 VVS |
| Copyright_xml | – notice: 2011 The Authors. Statistica Neerlandica © 2011 VVS |
| DBID | BSCLL AAYXX CITATION DKI X2L 7SC 8FD H8D JQ2 L7M L~C L~D |
| DOI | 10.1111/j.1467-9574.2011.00513.x |
| DatabaseName | Istex CrossRef RePEc IDEAS RePEc Computer and Information Systems Abstracts Technology Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | CrossRef Computer and Information Systems Abstracts Aerospace Database Aerospace Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics |
| EISSN | 1467-9574 |
| EndPage | 216 |
| ExternalDocumentID | 2631467851 blastanee_v_3a66_3ay_3a2012_3ai_3a2_3ap_3a203_216_htm 10_1111_j_1467_9574_2011_00513_x STAN513 ark_67375_WNG_FS85CJQ6_S |
| Genre | article |
| GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 123 1OB 1OC 29Q 31~ 33P 3SF 4.4 44B 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8V8 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABJNI ABPVW ACAHQ ACBWZ ACCZN ACGFO ACGFS ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AEMOZ AENEX AEUYR AEYWJ AFBPY AFEBI AFFNX AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHEFC AHQJS AIAGR AIDQK AIDYY AIQQE AITYG AIURR AJXKR AKVCP ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMVHM AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EAD EAP EBA EBR EBS EBU EJD EMK EST ESX F00 F01 F04 F5P FEDTE FSPIC G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K1G K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LPU LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TH9 TN5 TUS U5U UB1 V8K W8V W99 WBKPD WIB WIH WIK WOHZO WQJ WXSBR WYISQ XBAML XG1 ZZTAW ~IA ~WT ALUQN AAYXX CITATION O8X 0R 31 3N AAPBV ABHUG ABPTK ACXME ADAWD ADDAD AEUQT AFPWT AFVGU AGJLS DKI GA HZ IA IPNFZ NF P4A PQEST RIG WRC WT X2L XHC Y3 7SC 8FD H8D JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c4563-a7ee7b1cf7e633b3fe33a76135aeddbcaf6919c6d5b54768b1372fbdf5cf059e3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000302718700007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0039-0402 |
| IngestDate | Thu Jul 10 22:15:13 EDT 2025 Wed Oct 01 13:49:57 EDT 2025 Sun Jul 06 03:40:53 EDT 2025 Wed Aug 18 03:12:24 EDT 2021 Sat Nov 29 08:11:14 EST 2025 Sun Sep 21 06:19:57 EDT 2025 Tue Nov 11 03:32:49 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4563-a7ee7b1cf7e633b3fe33a76135aeddbcaf6919c6d5b54768b1372fbdf5cf059e3 |
| Notes | istex:9C3DC8EEA7404F49F4C823626B2FB8DA45D8FD00 ArticleID:STAN513 ark:/67375/WNG-FS85CJQ6-S . gaow@nenu.edu.cn ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| PQID | 993486459 |
| PQPubID | 23500 |
| PageCount | 14 |
| ParticipantIDs | proquest_miscellaneous_1762123497 proquest_miscellaneous_1022913323 proquest_journals_993486459 repec_primary_blastanee_v_3a66_3ay_3a2012_3ai_3a2_3ap_3a203_216_htm crossref_primary_10_1111_j_1467_9574_2011_00513_x wiley_primary_10_1111_j_1467_9574_2011_00513_x_STAN513 istex_primary_ark_67375_WNG_FS85CJQ6_S |
| PublicationCentury | 2000 |
| PublicationDate | May 2012 |
| PublicationDateYYYYMMDD | 2012-05-01 |
| PublicationDate_xml | – month: 05 year: 2012 text: May 2012 |
| PublicationDecade | 2010 |
| PublicationPlace | Oxford, UK |
| PublicationPlace_xml | – name: Oxford, UK – name: Oxford |
| PublicationSeriesTitle | Statistica Neerlandica |
| PublicationTitle | Statistica Neerlandica |
| PublicationYear | 2012 |
| Publisher | Blackwell Publishing Ltd Netherlands Society for Statistics and Operations Research |
| Publisher_xml | – name: Blackwell Publishing Ltd – name: Netherlands Society for Statistics and Operations Research |
| References | Csiszar, I. (1989), A Geometric interpretation of Darroch and Ratcliff's generalized iterative scaling, The Annals of Statistics 17, 1409-1413. Jaynes, E. T. (1957a), Information theory and statistical mechanics, Physics Review 106, 620-630. Agresti, A. and B. A. Coull (2002), The analysis of contingency tables under inequality constraints, Journal of Statistical Planning and Inference 107, 45-73. Ireland, C. T. and S. Kullback (1968), Contingency tables with given marginals, Biometrika 55, 179-188. McDonald, J. W. and I. Diamond (1990), On the fitting of generalized linear models with nonnegativity parameter constraints, Biometrics 46, 201-206. Ruschendorf, L. (1995), Convergence of the iterative proportional fitting procedure, The Annals of Statistics 23, 1160-1174. Darroch, J. N. (1962), Interactions in multifactor contingency tables, Journal of the Royal Statistical Society Series B. 24, 251-263 Deming, W. E. and F. F. Stephan (1940), On a least squares adjustment of a sampled frequency table when the expected marginal totals are known, The Annals of Mathematical Statistics 11, 427-444. Golan, A. and J. M. Perlo (2002), Comparison of maximum entropy and higher-order entropy estimators, Journal of Econometrics 107, 1-15. Jaynes, E. T. (1957b), Information theory and statistical mechanics II, Physics Review 108, 171-190. Kullback, S. (1967), An extension of information-theoretic derivation of certain limit relations for a Markov chain, SIAM J. Control 5, 51-53. Kullback, S. (1959), Information theory and statistics, John Wiley, New York. Silvapulle, M. J. and P. K. Sen (2005), Constrained statistical inference: inequality, order and shape constraints, J. Wiley. Gao, W. and N. Z. Shi (2003), I-projection onto isotonic cones and its applications to maximum likelihood estimation for log-linear models, The Annals of Institute of Statistical Mathematics 55, 251-263. Bhattacharya, B. (2006), An iterative procedure for general probability measures to obtain I-projection onto intersection of convex sets, The Annals of Statistics 34, 878-902. Robertson, T., F. T. Wright and R. L. Dykstra (1988), Order restricted statistical inference, John Wiley and Sons, New York. Darroch, J. N. and D. Ratcliff (1972), Generalized iterative scaling for log-linear models, The Annals of Mathematical Statistics 43, 1470-1480. Ruschendorf, L. and W. Thomsen (1993), Note on the Schrodinger equation and I-projections, Statistics & Probability Letters 17, 369-375. Agresti, A. (2002), Categorical data analysis, John Wiley, New York. Csiszar, I. (1975), I-divergence geometry of probability distributions and minimization problems, The Annals of Probability 3, 146-159. Gao, W., N. Z. Shi, M. L. Tang, L. Fu and G. Tian (2010), Unified generalized iterative scaling and its applications, Computational Statistics and Data Analysis 54, 1066-1078. Kullback, S. (1968), Probability densities with given marginals, The Annals of Mathematical Statistics 39, 1236-1243. 2010; 54 1990; 46 1993; 17 1968; 39 2006; 34 1995; 23 1957a; 106 1967; 5 2002; 107 1940; 11 1972; 43 2005 1962; 24 1957b; 108 2002 1959 1975; 3 1968; 55 1989; 17 2003; 55 1988 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_14_1 e_1_2_8_15_1 Robertson T. (e_1_2_8_20_1) 1988 Silvapulle M. J. (e_1_2_8_23_1) 2005 Kullback S. (e_1_2_8_16_1) 1959 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_10_1 e_1_2_8_21_1 e_1_2_8_11_1 e_1_2_8_22_1 e_1_2_8_12_1 Darroch J. N. (e_1_2_8_7_1) 1962; 24 |
| References_xml | – reference: Kullback, S. (1968), Probability densities with given marginals, The Annals of Mathematical Statistics 39, 1236-1243. – reference: McDonald, J. W. and I. Diamond (1990), On the fitting of generalized linear models with nonnegativity parameter constraints, Biometrics 46, 201-206. – reference: Ireland, C. T. and S. Kullback (1968), Contingency tables with given marginals, Biometrika 55, 179-188. – reference: Silvapulle, M. J. and P. K. Sen (2005), Constrained statistical inference: inequality, order and shape constraints, J. Wiley. – reference: Csiszar, I. (1989), A Geometric interpretation of Darroch and Ratcliff's generalized iterative scaling, The Annals of Statistics 17, 1409-1413. – reference: Kullback, S. (1967), An extension of information-theoretic derivation of certain limit relations for a Markov chain, SIAM J. Control 5, 51-53. – reference: Kullback, S. (1959), Information theory and statistics, John Wiley, New York. – reference: Deming, W. E. and F. F. Stephan (1940), On a least squares adjustment of a sampled frequency table when the expected marginal totals are known, The Annals of Mathematical Statistics 11, 427-444. – reference: Bhattacharya, B. (2006), An iterative procedure for general probability measures to obtain I-projection onto intersection of convex sets, The Annals of Statistics 34, 878-902. – reference: Robertson, T., F. T. Wright and R. L. Dykstra (1988), Order restricted statistical inference, John Wiley and Sons, New York. – reference: Csiszar, I. (1975), I-divergence geometry of probability distributions and minimization problems, The Annals of Probability 3, 146-159. – reference: Jaynes, E. T. (1957b), Information theory and statistical mechanics II, Physics Review 108, 171-190. – reference: Ruschendorf, L. (1995), Convergence of the iterative proportional fitting procedure, The Annals of Statistics 23, 1160-1174. – reference: Ruschendorf, L. and W. Thomsen (1993), Note on the Schrodinger equation and I-projections, Statistics & Probability Letters 17, 369-375. – reference: Agresti, A. (2002), Categorical data analysis, John Wiley, New York. – reference: Golan, A. and J. M. Perlo (2002), Comparison of maximum entropy and higher-order entropy estimators, Journal of Econometrics 107, 1-15. – reference: Jaynes, E. T. (1957a), Information theory and statistical mechanics, Physics Review 106, 620-630. – reference: Agresti, A. and B. A. Coull (2002), The analysis of contingency tables under inequality constraints, Journal of Statistical Planning and Inference 107, 45-73. – reference: Gao, W. and N. Z. Shi (2003), I-projection onto isotonic cones and its applications to maximum likelihood estimation for log-linear models, The Annals of Institute of Statistical Mathematics 55, 251-263. – reference: Gao, W., N. Z. Shi, M. L. Tang, L. Fu and G. Tian (2010), Unified generalized iterative scaling and its applications, Computational Statistics and Data Analysis 54, 1066-1078. – reference: Darroch, J. N. (1962), Interactions in multifactor contingency tables, Journal of the Royal Statistical Society Series B. 24, 251-263 – reference: Darroch, J. N. and D. Ratcliff (1972), Generalized iterative scaling for log-linear models, The Annals of Mathematical Statistics 43, 1470-1480. – volume: 107 start-page: 45 year: 2002 end-page: 73 article-title: The analysis of contingency tables under inequality constraints publication-title: Journal of Statistical Planning and Inference – volume: 55 start-page: 251 year: 2003 end-page: 263 article-title: I–projection onto isotonic cones and its applications to maximum likelihood estimation for log‐linear models publication-title: The Annals of Institute of Statistical Mathematics – volume: 24 start-page: 251 year: 1962 end-page: 263 article-title: Interactions in multifactor contingency tables publication-title: Journal of the Royal Statistical Society Series B – year: 1959 – volume: 17 start-page: 369 year: 1993 end-page: 375 article-title: Note on the Schrodinger equation and I‐projections publication-title: Statistics & Probability Letters – year: 2005 – volume: 11 start-page: 427 year: 1940 end-page: 444 article-title: On a least squares adjustment of a sampled frequency table when the expected marginal totals are known publication-title: The Annals of Mathematical Statistics – year: 2002 – year: 1988 – volume: 17 start-page: 1409 year: 1989 end-page: 1413 article-title: A Geometric interpretation of Darroch and Ratcliff's generalized iterative scaling publication-title: The Annals of Statistics – volume: 107 start-page: 1 year: 2002 end-page: 15 article-title: Comparison of maximum entropy and higher‐order entropy estimators publication-title: Journal of Econometrics – volume: 5 start-page: 51 year: 1967 end-page: 53 article-title: An extension of information‐theoretic derivation of certain limit relations for a Markov chain publication-title: SIAM J. Control – volume: 39 start-page: 1236 year: 1968 end-page: 1243 article-title: Probability densities with given marginals publication-title: The Annals of Mathematical Statistics – volume: 34 start-page: 878 year: 2006 end-page: 902 article-title: An iterative procedure for general probability measures to obtain I‐projection onto intersection of convex sets publication-title: The Annals of Statistics – volume: 55 start-page: 179 year: 1968 end-page: 188 article-title: Contingency tables with given marginals publication-title: Biometrika – volume: 106 start-page: 620 year: 1957a end-page: 630 article-title: Information theory and statistical mechanics publication-title: Physics Review – volume: 54 start-page: 1066 year: 2010 end-page: 1078 article-title: Unified generalized iterative scaling and its applications publication-title: Computational Statistics and Data Analysis – volume: 23 start-page: 1160 year: 1995 end-page: 1174 article-title: Convergence of the iterative proportional fitting procedure publication-title: The Annals of Statistics – volume: 108 start-page: 171 year: 1957b end-page: 190 article-title: Information theory and statistical mechanics II publication-title: Physics Review – volume: 46 start-page: 201 year: 1990 end-page: 206 article-title: On the fitting of generalized linear models with nonnegativity parameter constraints publication-title: Biometrics – volume: 3 start-page: 146 year: 1975 end-page: 159 article-title: I‐divergence geometry of probability distributions and minimization problems publication-title: The Annals of Probability – volume: 43 start-page: 1470 year: 1972 end-page: 1480 article-title: Generalized iterative scaling for log‐linear models publication-title: The Annals of Mathematical Statistics – ident: e_1_2_8_8_1 doi: 10.1214/aoms/1177692379 – ident: e_1_2_8_11_1 doi: 10.1016/j.csda.2009.10.017 – ident: e_1_2_8_6_1 doi: 10.1214/aos/1176347279 – ident: e_1_2_8_13_1 doi: 10.1093/biomet/55.1.179 – ident: e_1_2_8_14_1 doi: 10.1103/PhysRev.106.620 – ident: e_1_2_8_12_1 doi: 10.1016/S0304-4076(01)00110-5 – volume-title: Information theory and statistics year: 1959 ident: e_1_2_8_16_1 – volume: 24 start-page: 251 year: 1962 ident: e_1_2_8_7_1 article-title: Interactions in multifactor contingency tables publication-title: Journal of the Royal Statistical Society Series B doi: 10.1111/j.2517-6161.1962.tb00457.x – ident: e_1_2_8_18_1 doi: 10.1214/aoms/1177698249 – volume-title: Constrained statistical inference: inequality, order and shape constraints year: 2005 ident: e_1_2_8_23_1 – ident: e_1_2_8_2_1 doi: 10.1002/0471249688 – ident: e_1_2_8_3_1 doi: 10.1016/S0378-3758(02)00243-4 – ident: e_1_2_8_21_1 doi: 10.1214/aos/1176324703 – volume-title: Order restricted statistical inference year: 1988 ident: e_1_2_8_20_1 – ident: e_1_2_8_10_1 doi: 10.1007/BF02530498 – ident: e_1_2_8_4_1 doi: 10.1214/009053606000000056 – ident: e_1_2_8_5_1 doi: 10.1214/aop/1176996454 – ident: e_1_2_8_15_1 doi: 10.1103/PhysRev.108.171 – ident: e_1_2_8_19_1 doi: 10.2307/2531643 – ident: e_1_2_8_22_1 doi: 10.1016/0167-7152(93)90257-J – ident: e_1_2_8_9_1 doi: 10.1214/aoms/1177731829 – ident: e_1_2_8_17_1 doi: 10.1137/0305003 |
| SSID | ssj0017946 |
| Score | 1.867879 |
| Snippet | This article considers the problem of estimating the cell frequencies in a contingency table under inequality constraints. Algorithms are proposed for cell... |
| SourceID | proquest repec crossref wiley istex |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 203 |
| SubjectTerms | Algorithms Contingency Convergence Estimating Estimating techniques Frequencies I-projection Inequalities inequality constraints maximum entropy optimization Statistical analysis Studies Tables (data) the minimum discrimination information Theorems |
| Title | Estimating cell frequencies under inequality constraints based on the Kullback-Leibler information |
| URI | https://api.istex.fr/ark:/67375/WNG-FS85CJQ6-S/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1467-9574.2011.00513.x http://econpapers.repec.org/article/blastanee/v_3a66_3ay_3a2012_3ai_3a2_3ap_3a203-216.htm https://www.proquest.com/docview/993486459 https://www.proquest.com/docview/1022913323 https://www.proquest.com/docview/1762123497 |
| Volume | 66 |
| WOSCitedRecordID | wos000302718700007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1467-9574 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017946 issn: 0039-0402 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELbQLodeKL8itCAjIW5Bmzi218dq6YKgWgHbit4s_0xKVciustuqvfEOvCFPwkySRlpACCEOSawkjpzxTOb7nPGYsWfKQOEKmaUgI6SFzMsUUZFJczWWMRoVQbhmsQk9m42Pj827Lv6J5sK0-SH6ATeyjOZ7TQbu_OpXIzdSF10mTtQv8QLx5DBHNS4GbPjyw_TooP-nQKnU2ySN9Dvg57ie3z5rw1kNSe6XG0h0WMMSwiaubRzTdPt_vtJtdquDp3yv1ac77AZUd9kWIdI2ofM9FvexQDC3OuE06s_Luo3GRsrNaUZazbEd7VzNKx4IftIqFOsVJ4cZ-aLiiDn5W6S-3oWz71-_HcCp_9xU62dS3mdH0_3Dyeu0W6ohDYjAROo0gPZZKDUoIbwoQQinESpIBzH64EplMhNUlF4WyHB8JnRe-ljKUCLAA_GADapFBQ8ZD0aOAHJ03sjegtLGZ1J7P8phVEQnsoRl131il21GDrvBZLQlAVoSoG0EaC8T9rzpvL6Cq88ook1L-3H2yk7nYzl5817ZecJ2rnvXdsa8sgjhijEl3UnY0_4qWiEJ2VWwOF9Z4s0G6X4u_nAP-h3ECYXRCZs0itM3xyNTQi4AYC-scErh7go3fIUcD6dUxG3ZnBI2z5T9tP6SMNUo019Lwc4P92ZYevSvFXfYFjWpjffcZYN1fQ6P2c1wgTpYP-ns7QfdOSse |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdQi8Re-EYL48NIiLegJo7t5nEqK4OVCmgn9mb54wLTIK3Sbtre-B_4D_lLuEuySAWEEOIhiZXEkX2-y_3OPt8x9lTlkNlMJjHIAHEm0yJGVJTHqRrKEHIVQNg62YSeTodHR_nbNh0Q7YVp4kN0E24kGfX_mgScJqR_lfJc6qwNxYkMJp4joOxnyFWyx_ov3o8PJ92iAsVSb6I00nrAz449v_3WhrbqE-HPN6Bov4Il-E1gW2um8Y3_2qeb7HoLUPluw1G32BUob7MtwqRNSOc7LOxhgYBu-ZHTvD8vqsYfG41uTnvSKo4NaXZrXnBPAJTyUKxXnFRm4IuSI-rkB9gmZ_3J96_fJnDsPtfVur2Ud9nheG8-2o_bZA2xRwwmYqsBtEt8oUEJ4UQBQliNYEFaCMF5W6g8yb0K0skMbRyXCJ0WLhTSFwjxQNxjvXJRwjbjPpcDgBTVN9pvXuncJVI7N0hhkAUrkogll4Nilk1MDrNhy2hDBDREQFMT0JxH7Fk9el0FW52QT5uW5sP0pRnPhnL0-p0ys4jtXA6vacV5ZRDEZUMKuxOxJ91TlEMisi1hcboyZDnnaPCn4g_voOZBpJDlOmKjmnO65ji0ldAaADBnRlil8HSBB3YhxcsxFfFY1reESRNlPq2_REzV3PTXVDCz-e4US_f_teJjdm1__mZiJq-mBztsi5rXeH8-YL11dQoP2VV_hvxYPWqF7wfDdS8O |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQF6FeeCNCeRgJcQvaxLG9PlbbhkdXq8K2ojfLjielKmRX2W3V3vgP_EN-CTNJGmkBIYQ4JLGSOLLHM5nv82PM2AtlIHOZTGKQAeJMpmWMqMjEqRrJEIwKIFyz2YSeTkdHR2a_2w6I1sK08SH6DjeyjOZ_TQYOi1D-auVG6qwLxYkKJl4hoBxk0ii00sHOh_xw0g8qUCz1NkojjQf8PLHnt99a81YDEvzFGhQd1LCAYh3YNp4pv_Vf63Sb3ewAKt9uNeoOuwbVXbZJmLQN6XyPhV1MENCtjjn1-_OybudjI-nmtCat5liQdrXmJS8IgNI-FKslJ5cZ-LziiDr5HpJf74rT71-_TeDEf26y9Wsp77PDfPdg_CbuNmuIC8RgInYaQPukKDUoIbwoQQinESxIByH4wpXKJKZQQXqZIcfxidBp6UMpixIhHogHbKOaV_CQ8cLIIUCK7hv5W6G08YnU3g9TGGbBiSRiyVWj2EUbk8OucRltSYCWBGgbAdqLiL1sWq_P4OpTmtOmpf04fW3z2UiO371XdhaxravmtZ05Ly2CuGxEYXci9rx_inZIQnYVzM-WlpizQcKfij-8g54HkUJmdMTGjeb0xfHIlZANANhzK5xSeLrEA6uQ4uWEkngsmlvCpomyn1ZfIqYabfprKdjZwfYUU4_-NeMzdmN_J7eTt9O9LbZJpWsnfz5mG6v6DJ6w68U5qmP9tLO9Hwh5Lok |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+cell+frequencies+under+inequality+constraints+based+on+the+Kullback-Leibler+information&rft.jtitle=Statistica+Neerlandica&rft.au=Fu%2C+Lianyan&rft.au=Gao%2C+Wei&rft.au=Shi%2C+Ning-Zhong&rft.date=2012-05-01&rft.issn=0039-0402&rft.eissn=1467-9574&rft.volume=66&rft.issue=2&rft.spage=203&rft.epage=216&rft_id=info:doi/10.1111%2Fj.1467-9574.2011.00513.x&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0039-0402&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0039-0402&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0039-0402&client=summon |