Floodwater pathways in urban areas: A method to compute porosity fields for anisotropic subgrid models in differential form
•Flood modelling in real urban areas is a challenge for differential anisotropic porosity models.•Direction-dependent, cell-based conveyance porosity is not trivial to estimate.•A method is proposed to extract conveyance porosity fields from building footprints.•Straightforward application to comple...
Saved in:
| Published in: | Journal of hydrology (Amsterdam) Vol. 589; p. 125193 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.10.2020
|
| Subjects: | |
| ISSN: | 0022-1694, 1879-2707 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •Flood modelling in real urban areas is a challenge for differential anisotropic porosity models.•Direction-dependent, cell-based conveyance porosity is not trivial to estimate.•A method is proposed to extract conveyance porosity fields from building footprints.•Straightforward application to complex urban layouts provides accurate results.•A Fortran numerical implementation of the proposed method is made available.
In the framework of porosity models for large-scale urban floods, this work presents a method to compute the spatial distribution of the porosity parameters of complex urban areas by analyzing the footprints of buildings and obstacles. Precisely, an algorithm is described that estimates the four parameters required by the differential, dual-porosity formulation we recently presented. In this formulation, beside the common isotropic porosity accounting for the reduced storage volume due to buildings, a cell-based conveyance porosity is introduced in the momentum equations in tensor form to model anisotropic resistances and alterations in the flow direction due to presence of preferential pathways such as streets. A cell-averaged description of the spatial connectivity in the urban medium and of the preferential flow directions is the main ingredient for robust and mesh-independent estimates. To achieve this goal, the algorithm here presented automatically extracts the spatially distributed porosity fields of urban layouts relying only on geometrical information, thus avoiding additional calibration effort. The proposed method is described with the aid of schematic applications and then tested by simulating the flooding of complex urban areas using structured Cartesian grids. A Fortran implementation of the algorithm is made available for free download and use. |
|---|---|
| AbstractList | •Flood modelling in real urban areas is a challenge for differential anisotropic porosity models.•Direction-dependent, cell-based conveyance porosity is not trivial to estimate.•A method is proposed to extract conveyance porosity fields from building footprints.•Straightforward application to complex urban layouts provides accurate results.•A Fortran numerical implementation of the proposed method is made available.
In the framework of porosity models for large-scale urban floods, this work presents a method to compute the spatial distribution of the porosity parameters of complex urban areas by analyzing the footprints of buildings and obstacles. Precisely, an algorithm is described that estimates the four parameters required by the differential, dual-porosity formulation we recently presented. In this formulation, beside the common isotropic porosity accounting for the reduced storage volume due to buildings, a cell-based conveyance porosity is introduced in the momentum equations in tensor form to model anisotropic resistances and alterations in the flow direction due to presence of preferential pathways such as streets. A cell-averaged description of the spatial connectivity in the urban medium and of the preferential flow directions is the main ingredient for robust and mesh-independent estimates. To achieve this goal, the algorithm here presented automatically extracts the spatially distributed porosity fields of urban layouts relying only on geometrical information, thus avoiding additional calibration effort. The proposed method is described with the aid of schematic applications and then tested by simulating the flooding of complex urban areas using structured Cartesian grids. A Fortran implementation of the algorithm is made available for free download and use. In the framework of porosity models for large-scale urban floods, this work presents a method to compute the spatial distribution of the porosity parameters of complex urban areas by analyzing the footprints of buildings and obstacles. Precisely, an algorithm is described that estimates the four parameters required by the differential, dual-porosity formulation we recently presented. In this formulation, beside the common isotropic porosity accounting for the reduced storage volume due to buildings, a cell-based conveyance porosity is introduced in the momentum equations in tensor form to model anisotropic resistances and alterations in the flow direction due to presence of preferential pathways such as streets. A cell-averaged description of the spatial connectivity in the urban medium and of the preferential flow directions is the main ingredient for robust and mesh-independent estimates. To achieve this goal, the algorithm here presented automatically extracts the spatially distributed porosity fields of urban layouts relying only on geometrical information, thus avoiding additional calibration effort. The proposed method is described with the aid of schematic applications and then tested by simulating the flooding of complex urban areas using structured Cartesian grids. A Fortran implementation of the algorithm is made available for free download and use. |
| ArticleNumber | 125193 |
| Author | Ferrari, Alessia Viero, Daniele P. |
| Author_xml | – sequence: 1 givenname: Alessia surname: Ferrari fullname: Ferrari, Alessia email: alessia.ferrari@unipr.it organization: Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze 181/A, 43124 Parma, Italy – sequence: 2 givenname: Daniele P. surname: Viero fullname: Viero, Daniele P. email: daniele.viero@unipd.it organization: Department of Civil, Environmental and Architectural Engineering, University of Padova, via Loredan 20, 35131 Padova, Italy |
| BookMark | eNqFkE1rGzEQhkVJoE7Sn1DQsZd19S1veygh5KMQ6KU9C1ka1TLa1VbSNpj--a7jnHLJXAaG93lhngt0NuYREPpIyZoSqj7v1_vdwZec1oyw5cYk7fk7tKIb3XdME32GVoQw1lHVi_footY9WYZzsUL_7lLO_sk2KHiybfdkDxXHEc9la0dsC9j6BV_jAdoue9wydnmY5gZ4yiXX2A44REi-4pALtmOsuZU8RYfrvP1dosdD9pCeK30MAQqMLdp0jA9X6DzYVOHDy75Ev-5uf948dI8_7r_fXD92TkjZOs885Vxt_EYHp63k1nkVVOg5CGEFVYJKqSjrQw-aCxf6PggeJCiu_WYL_BJ9OvVOJf-ZoTYzxOogJTtCnqthkglOhFZ6icpT1C3f1QLBTCUOthwMJeYo2-zNi2xzlG1Oshfu6yvOxWZbzGMrNqY36W8nejEFfyMUU12E0YGPBVwzPsc3Gv4DKFSjKQ |
| CitedBy_id | crossref_primary_10_1016_j_jhydrol_2021_127034 crossref_primary_10_1016_j_jhydrol_2022_128687 crossref_primary_10_1016_j_jhydrol_2023_129192 crossref_primary_10_3390_urbansci7010017 crossref_primary_10_1080_00221686_2022_2106598 crossref_primary_10_1016_j_jhydrol_2024_131239 crossref_primary_10_3389_frwa_2024_1520913 crossref_primary_10_1061_JHYEFF_HEENG_5888 crossref_primary_10_1080_00221686_2023_2201210 crossref_primary_10_5194_hess_25_2843_2021 crossref_primary_10_1016_j_jhydrol_2024_131232 crossref_primary_10_3390_w13070960 crossref_primary_10_1016_j_compfluid_2022_105360 crossref_primary_10_1016_j_jhydrol_2022_127485 crossref_primary_10_1016_j_jhydrol_2022_128596 crossref_primary_10_1007_s11431_022_2393_2 crossref_primary_10_1007_s11069_025_07484_w crossref_primary_10_1016_j_jhydrol_2022_127763 crossref_primary_10_1016_j_scs_2023_104485 crossref_primary_10_1016_j_scitotenv_2023_168718 crossref_primary_10_3390_geosciences13040112 crossref_primary_10_1088_1742_6596_2162_1_012020 crossref_primary_10_1038_s41597_020_00791_w crossref_primary_10_1063_5_0214441 crossref_primary_10_3390_hydrology9030050 |
| Cites_doi | 10.1080/00221686.2016.1238013 10.1029/2000WR900167 10.1016/j.jhydrol.2008.08.009 10.1007/s11069-015-1959-4 10.1016/j.jhydrol.2019.124308 10.1016/j.advwatres.2019.02.007 10.1080/00221686.2007.9521831 10.1038/srep36021 10.1016/j.scitotenv.2015.08.068 10.1016/j.advwatres.2012.02.012 10.5194/nhess-16-1413-2016 10.1002/fld.2107 10.1016/j.jhydrol.2013.04.023 10.1016/j.advwatres.2019.05.004 10.1016/j.advwatres.2009.02.010 10.1016/j.envsoft.2018.08.008 10.1016/j.jhydrol.2017.09.051 10.1016/j.advwatres.2019.103455 10.1016/j.advwatres.2013.05.011 10.1016/j.envsoft.2014.02.003 10.1007/s10584-014-1084-5 10.1016/j.advwatres.2011.11.002 10.1016/j.advwatres.2019.103465 10.1080/00221686.2008.9521842 10.1016/j.advwatres.2017.09.002 10.1016/j.advwatres.2018.09.014 10.5194/nhess-15-1011-2015 10.1016/j.envsoft.2016.11.012 10.1016/j.jhydrol.2015.01.059 10.1088/1748-9326/aaac65 10.1073/pnas.1818227115 10.1016/j.cageo.2006.07.009 10.1016/j.advwatres.2017.06.023 10.1016/j.advwatres.2018.01.026 10.1016/j.advwatres.2017.06.008 10.1016/j.envsoft.2018.06.010 10.1016/j.advwatres.2019.01.010 10.1038/s41467-018-04396-1 10.1016/j.cities.2018.01.022 10.1016/j.compfluid.2008.02.008 10.1002/hyp.5936 10.1080/09640568.2019.1641474 10.1016/j.advwatres.2017.03.007 10.1016/j.advwatres.2020.103587 10.4310/CMS.2007.v5.n1.a6 10.1002/hyp.7813 10.1016/j.jhydrol.2018.10.055 10.1016/j.scitotenv.2018.09.121 10.1063/1.3370334 10.1002/2013WR014293 10.1016/j.advwatres.2017.02.009 10.1093/acrefore/9780199389407.013.127 10.1016/j.jhydrol.2016.08.025 10.5194/nhess-20-59-2020 10.1002/fld.1059 10.1016/j.jhydrol.2019.124231 10.1016/j.gloenvcha.2012.07.004 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier B.V. |
| Copyright_xml | – notice: 2020 Elsevier B.V. |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.jhydrol.2020.125193 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 1879-2707 |
| ExternalDocumentID | 10_1016_j_jhydrol_2020_125193 S0022169420306533 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABEFU ABFNM ABGRD ABJNI ABMAC ABQEM ABQYD ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIUM ACLVX ACNCT ACRLP ACSBN ADBBV ADEZE ADMUD ADQTV AEBSH AEKER AENEX AEQOU AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 D-I DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMA HVGLF HZ~ H~9 IHE IMUCA J1W K-O KOM LW9 LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SCC SDF SDG SDP SEP SES SEW SPC SPCBC SPD SSA SSE SSZ T5K TN5 UQL VOH WUQ Y6R ZCA ZMT ZY4 ~02 ~G- ~KM 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABUFD ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c455t-d2d13368d87fc7a53acd6f6f93e44a41641556129f9e734cf99f43f5e637d8be3 |
| ISICitedReferencesCount | 30 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000568830400058&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0022-1694 |
| IngestDate | Sat Sep 27 21:41:53 EDT 2025 Sat Nov 29 07:30:17 EST 2025 Tue Nov 18 21:55:56 EST 2025 Fri Feb 23 02:43:17 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Urban flood Spatially-distributed porosity field Anisotropic friction Structured grid Porosity model Conveyance porosity Porous shallow water equations |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c455t-d2d13368d87fc7a53acd6f6f93e44a41641556129f9e734cf99f43f5e637d8be3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | http://hdl.handle.net/11577/3342869 |
| PQID | 2524304767 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_2524304767 crossref_primary_10_1016_j_jhydrol_2020_125193 crossref_citationtrail_10_1016_j_jhydrol_2020_125193 elsevier_sciencedirect_doi_10_1016_j_jhydrol_2020_125193 |
| PublicationCentury | 2000 |
| PublicationDate | October 2020 2020-10-00 20201001 |
| PublicationDateYYYYMMDD | 2020-10-01 |
| PublicationDate_xml | – month: 10 year: 2020 text: October 2020 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of hydrology (Amsterdam) |
| PublicationYear | 2020 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Kundzewicz, Hegger, Matczak, Driessen (b0155) 2018; 115 Ferrari, Vacondio, Mignosa (b0100) 2020; 140 Viero, Roder, Matticchio, Defina, Tarolli (b0320) 2019; 651 Yu, Lane (b0335) 2006; 20 Wang, Chen, Fu, Djordjević, Zhang, Savić (b0325) 2018; 107 Cozzolino, Pepe, Cimorelli, D’Aniello, Della Morte, Pianese (b0060) 2018; 114 Guinot, Soares-Frazão (b0120) 2006; 50 Soares-Frazão, Franzini, Linkens, Snaps (b0245) 2018 Toro (b0265) 1999 Viero, Valipour (b0315) 2017; 104 Testa, Zuccalà, Alcrudo, Mulet, Soares-Frazão (b0260) 2007; 45 Guinot (b0115) 2017; 109 Özgen, Zhao, Liang, Hinkelmann (b0210) 2016; 541 Vacondio, Dal Palù, Mignosa (b0275) 2014; 57 Guinot, Sanders, Schubert (b0125) 2017; 103 Viero (b0300) 2019; 568 Mel, Viero, Carniello, D’Alpaos (b0190) 2020 Guinot (b0110) 2017; 107 Yu, Lane (b0340) 2011; 25 Costabile, Costanzo, De Lorenzo, Macchione (b0055) 2020; 580 Tanoue, Hirabayashi, Ikeuchi (b0255) 2016; 6 Bruwier, Archambeau, Erpicum, Pirotton, Dewals (b0030) 2017; 554 Vacondio, Aureli, Ferrari, Mignosa, Dal Palù (b0280) 2016; 80 Radhakrishnan, Pathirana, Ashley, Gersonius, Zevenbergen (b0215) 2018; 78 Wing, Bates, Smith, Sampson, Johnson, Fargione, Morefield (b0330) 2018; 13 Braschi, Gallati (b0025) 1989 Chen, Evans, Djordjević, Savić (b0040) 2012; 470–471 Sanders, Schubert (b0235) 2019; 126 Alcrudo, Garcia-Navarro, Brufau, Murillo, Garcia, Mulet, Testa, Zuccalà (b0005) 2002 Defina (b0070) 2000; 36 Defina, D’Alpaos, Matticchio (b0075) 1994 Li, Hodges (b0165) 2019; 129 Toro (b0270) 2001 Jongman, Ward, Aerts (b0145) 2012; 22 Li, Hodges (b0170) 2020; 135 Soares-Frazao, Lhomme, Guinot, Zech (b0250) 2008; 46 Kim, Sanders, Famiglietti, Guinot (b0150) 2015; 523 Rong, Zhang, Zheng, Hu, Peng, Feng (b0220) 2020; 584 Cea, Vázquez-Cendón (b0035) 2010; 62 Guinot, Delenne, Rousseau, Boutron (b0130) 2018; 122 Muis, Güneralp, Jongman, Aerts, Ward (b0200) 2015; 538 Vacondio, Dal Palù, Ferrari, Mignosa, Aureli, Dazzi (b0285) 2017; 88 Guinot (b0105) 2012; 37 Liang, Borthwick (b0175) 2009; 38 Hodges (b0135) 2015; 15 Ferrari, Viero, Vacondio, Defina, Mignosa (b0090) 2019; 125 Liang, Marche (b0180) 2009; 32 Kurganov, Petrova (b0160) 2007; 5 Viero, Peruzzo, Carniello, Defina (b0310) 2014; 50 Arnell, Gosling (b0010) 2016; 134 Aureli, Maranzoni, Mignosa, Ziveri (b0020) 2008 Sanders (b0225) 2017 Arrault, Finaud-Guyot, Archambeau, Bruwier, Erpicum, Pirotton, Dewals (b0015) 2016; 16 Jongman (b0140) 2018; 9 Viero, D’Alpaos, Carniello, Defina (b0305) 2013; 59 Chen, Garambois, Finaud-Guyot, Dellinger, Mosé, Terfous, Ghenaim (b0050) 2018; 109 D’Alpaos, Defina, D’Alpaos, Defina (b0065) 2007; 33 Varra, Pepe, Cimorelli, Della Morte, Cozzolino (b0290) 2020; 136 Schubert, Sanders (b0240) 2012; 41 Ferrari, Vacondio, Dazzi, Mignosa (b0085) 2017; 107 Chen, Evans, Djordjević, Savić (b0045) 2012; 426–427 Defina, Viero (b0080) 2010; 22 Özgen, Liang, Hinkelmann (b0205) 2015; 40 Sanders, Schubert, Gallegos (b0230) 2008; 362 Mignot, Zeng, Dominguez, Li, Rivière, Bazin (b0195) 2013; 494 Ferrari, Dazzi, Vacondio, Mignosa (b0095) 2020; 20 McClymont, Morrison, Beevers, Carmen (b0185) 2020; 63 Velickovic, Zech, Soares-Frazão (b0295) 2017; 55 Soares-Frazao (10.1016/j.jhydrol.2020.125193_b0250) 2008; 46 Toro (10.1016/j.jhydrol.2020.125193_b0265) 1999 Liang (10.1016/j.jhydrol.2020.125193_b0180) 2009; 32 Kundzewicz (10.1016/j.jhydrol.2020.125193_b0155) 2018; 115 Tanoue (10.1016/j.jhydrol.2020.125193_b0255) 2016; 6 Ferrari (10.1016/j.jhydrol.2020.125193_b0085) 2017; 107 D’Alpaos (10.1016/j.jhydrol.2020.125193_b0065) 2007; 33 Varra (10.1016/j.jhydrol.2020.125193_b0290) 2020; 136 Defina (10.1016/j.jhydrol.2020.125193_b0075) 1994 Alcrudo (10.1016/j.jhydrol.2020.125193_b0005) 2002 Özgen (10.1016/j.jhydrol.2020.125193_b0210) 2016; 541 Bruwier (10.1016/j.jhydrol.2020.125193_b0030) 2017; 554 Jongman (10.1016/j.jhydrol.2020.125193_b0140) 2018; 9 Viero (10.1016/j.jhydrol.2020.125193_b0315) 2017; 104 Rong (10.1016/j.jhydrol.2020.125193_b0220) 2020; 584 Guinot (10.1016/j.jhydrol.2020.125193_b0130) 2018; 122 Arrault (10.1016/j.jhydrol.2020.125193_b0015) 2016; 16 Costabile (10.1016/j.jhydrol.2020.125193_b0055) 2020; 580 Liang (10.1016/j.jhydrol.2020.125193_b0175) 2009; 38 Mignot (10.1016/j.jhydrol.2020.125193_b0195) 2013; 494 Chen (10.1016/j.jhydrol.2020.125193_b0040) 2012; 470–471 Defina (10.1016/j.jhydrol.2020.125193_b0080) 2010; 22 Jongman (10.1016/j.jhydrol.2020.125193_b0145) 2012; 22 Schubert (10.1016/j.jhydrol.2020.125193_b0240) 2012; 41 Sanders (10.1016/j.jhydrol.2020.125193_b0230) 2008; 362 Ferrari (10.1016/j.jhydrol.2020.125193_b0095) 2020; 20 Soares-Frazão (10.1016/j.jhydrol.2020.125193_b0245) 2018 Arnell (10.1016/j.jhydrol.2020.125193_b0010) 2016; 134 Viero (10.1016/j.jhydrol.2020.125193_b0305) 2013; 59 Yu (10.1016/j.jhydrol.2020.125193_b0335) 2006; 20 Özgen (10.1016/j.jhydrol.2020.125193_b0205) 2015; 40 Cea (10.1016/j.jhydrol.2020.125193_b0035) 2010; 62 Testa (10.1016/j.jhydrol.2020.125193_b0260) 2007; 45 Guinot (10.1016/j.jhydrol.2020.125193_b0120) 2006; 50 Li (10.1016/j.jhydrol.2020.125193_b0165) 2019; 129 Vacondio (10.1016/j.jhydrol.2020.125193_b0280) 2016; 80 Aureli (10.1016/j.jhydrol.2020.125193_b0020) 2008 Viero (10.1016/j.jhydrol.2020.125193_b0320) 2019; 651 Ferrari (10.1016/j.jhydrol.2020.125193_b0100) 2020; 140 Chen (10.1016/j.jhydrol.2020.125193_b0050) 2018; 109 Cozzolino (10.1016/j.jhydrol.2020.125193_b0060) 2018; 114 Yu (10.1016/j.jhydrol.2020.125193_b0340) 2011; 25 McClymont (10.1016/j.jhydrol.2020.125193_b0185) 2020; 63 Vacondio (10.1016/j.jhydrol.2020.125193_b0275) 2014; 57 Viero (10.1016/j.jhydrol.2020.125193_b0310) 2014; 50 Sanders (10.1016/j.jhydrol.2020.125193_b0225) 2017 Guinot (10.1016/j.jhydrol.2020.125193_b0115) 2017; 109 Guinot (10.1016/j.jhydrol.2020.125193_b0125) 2017; 103 Braschi (10.1016/j.jhydrol.2020.125193_b0025) 1989 Wing (10.1016/j.jhydrol.2020.125193_b0330) 2018; 13 Kim (10.1016/j.jhydrol.2020.125193_b0150) 2015; 523 Guinot (10.1016/j.jhydrol.2020.125193_b0110) 2017; 107 Viero (10.1016/j.jhydrol.2020.125193_b0300) 2019; 568 Wang (10.1016/j.jhydrol.2020.125193_b0325) 2018; 107 Ferrari (10.1016/j.jhydrol.2020.125193_b0090) 2019; 125 Guinot (10.1016/j.jhydrol.2020.125193_b0105) 2012; 37 Hodges (10.1016/j.jhydrol.2020.125193_b0135) 2015; 15 Sanders (10.1016/j.jhydrol.2020.125193_b0235) 2019; 126 Velickovic (10.1016/j.jhydrol.2020.125193_b0295) 2017; 55 Defina (10.1016/j.jhydrol.2020.125193_b0070) 2000; 36 Mel (10.1016/j.jhydrol.2020.125193_b0190) 2020 Kurganov (10.1016/j.jhydrol.2020.125193_b0160) 2007; 5 Li (10.1016/j.jhydrol.2020.125193_b0170) 2020; 135 Vacondio (10.1016/j.jhydrol.2020.125193_b0285) 2017; 88 Radhakrishnan (10.1016/j.jhydrol.2020.125193_b0215) 2018; 78 Chen (10.1016/j.jhydrol.2020.125193_b0045) 2012; 426–427 Toro (10.1016/j.jhydrol.2020.125193_b0270) 2001 Muis (10.1016/j.jhydrol.2020.125193_b0200) 2015; 538 |
| References_xml | – start-page: 72 year: 1994 end-page: 81 ident: b0075 article-title: A new set of equations for very shallow water and partially dry areas suitable to 2D numerical models publication-title: Modelling Flood Propagation Over Initially Dry Areas – volume: 494 start-page: 10 year: 2013 end-page: 19 ident: b0195 article-title: Impact of topographic obstacles on the discharge distribution in open-channel bifurcations publication-title: J. Hydrol. – volume: 126 start-page: 79 year: 2019 end-page: 95 ident: b0235 article-title: PRIMo: parallel raster inundation model publication-title: Adv. Water Resour. – volume: 55 start-page: 85 year: 2017 end-page: 100 ident: b0295 article-title: Steady-flow experiments in urban areas and anisotropic porosity model publication-title: J. Hydraul. Res. – volume: 33 start-page: 476 year: 2007 end-page: 496 ident: b0065 article-title: Mathematical modeling of tidal hydrodynamics in shallow lagoons: a review of open issues and applications to the Venice lagoon publication-title: Comput. Geosci. – volume: 136 year: 2020 ident: b0290 article-title: On integral and differential porosity models for urban flooding simulation publication-title: Adv. Water Resour. – volume: 134 start-page: 387 year: 2016 end-page: 401 ident: b0010 article-title: The impacts of climate change on river flood risk at the global scale publication-title: Clim. Change – volume: 63 start-page: 1151 year: 2020 end-page: 1176 ident: b0185 article-title: Flood resilience: a systematic review publication-title: J. Environ. Plan. Manage. – start-page: 117 year: 1989 end-page: 126 ident: b0025 article-title: Simulation of a levee-breaking submersion of planes and urban areas publication-title: HYDROCOMP ’89, Proceedings of the International Conference on Computational Modelling and Experimental Methods in Hydraulics – volume: 59 start-page: 82 year: 2013 end-page: 94 ident: b0305 article-title: Mathematical modeling of flooding due to river bank failure publication-title: Adv. Water Resour. – volume: 109 start-page: 133 year: 2017 end-page: 157 ident: b0115 article-title: A critical assessment of flux and source term closures in shallow water models with porosity for urban flood simulations publication-title: Adv. Water Resour. – volume: 45 start-page: 37 year: 2007 end-page: 44 ident: b0260 article-title: Flash flood flow experiment in a simplified urban district publication-title: J. Hydraul. Res. – volume: 40 start-page: 7447 year: 2015 end-page: 7473 ident: b0205 article-title: Shallow water equations with depth-dependent anisotropic porosity for subgrid-scale topography publication-title: Appl. Math. Model. – volume: 37 start-page: 40 year: 2012 end-page: 72 ident: b0105 article-title: Multiple porosity shallow water models for macroscopic modelling of urban floods publication-title: Adv. Water Resour. – volume: 584 year: 2020 ident: b0220 article-title: Three-dimensional urban flood inundation simulation based on digital aerial photogrammetry publication-title: J. Hydrol. – volume: 38 start-page: 221 year: 2009 end-page: 234 ident: b0175 article-title: Adaptive quadtree simulation of shallow flows with wet–dry fronts over complex topography publication-title: Comput. Fluids – volume: 16 start-page: 1413 year: 2016 end-page: 1429 ident: b0015 article-title: Hydrodynamics of long-duration urban floods: experiments and numerical modelling publication-title: Nat. Hazards Earth Syst. Sci. – volume: 470–471 start-page: 1 year: 2012 end-page: 11 ident: b0040 article-title: Multi-layered coarse grid modelling in 2D urban flood simulations publication-title: J. Hydrol. – volume: 104 start-page: 1 year: 2017 end-page: 14 ident: b0315 article-title: Modeling anisotropy in free-surface overland and shallow inundation flows publication-title: Adv. Water Resour. – volume: 107 start-page: 43 year: 2017 end-page: 55 ident: b0110 article-title: Consistency and bicharacteristic analysis of integral porosity shallow water models. Explaining model oversensitivity to mesh design publication-title: Adv. Water Resour. – volume: 122 start-page: 1 year: 2018 end-page: 26 ident: b0130 article-title: Flux closures and source term models for shallow water models with depth-dependent integral porosity publication-title: Adv. Water Resour. – volume: 6 start-page: 36021 year: 2016 ident: b0255 article-title: Global-scale river flood vulnerability in the last 50 years publication-title: Sci. Rep. – volume: 103 start-page: 16 year: 2017 end-page: 31 ident: b0125 article-title: Dual integral porosity shallow water model for urban flood modelling publication-title: Adv. Water Resour. – volume: 57 start-page: 60 year: 2014 end-page: 75 ident: b0275 article-title: GPU-enhanced Finite Volume Shallow Water solver for fast flood simulations publication-title: Environ. Model. Softw. – start-page: accepted year: 2020 ident: b0190 article-title: Optimal floodgate operation for river flood management: the case study of Padova (Italy) publication-title: J. Hydrol.: Reg. Stud. – volume: 13 year: 2018 ident: b0330 article-title: Estimates of present and future flood risk in the conterminous United States publication-title: Environ. Res. Lett. – volume: 62 start-page: 903 year: 2010 end-page: 930 ident: b0035 article-title: Unstructured finite volume discretization of two-dimensional depth-averaged shallow water equations with porosity publication-title: Int. J. Numer. Methods Fluids – volume: 125 start-page: 98 year: 2019 end-page: 113 ident: b0090 article-title: Flood inundation modeling in urbanized areas: a mesh-independent porosity approach with anisotropic friction publication-title: Adv. Water Resour. – volume: 80 start-page: 103 year: 2016 end-page: 125 ident: b0280 article-title: Simulation of the January 2014 flood on the Secchia River using a fast and high-resolution 2D parallel shallow-water numerical scheme publication-title: Nat. Hazards – volume: 426–427 start-page: 1 year: 2012 end-page: 16 ident: b0045 article-title: A coarse-grid approach to representing building blockage effects in 2D urban flood modelling publication-title: J. Hydrol. – volume: 32 start-page: 873 year: 2009 end-page: 884 ident: b0180 article-title: Numerical resolution of well-balanced shallow water equations with complex source terms publication-title: Adv. Water Resour. – volume: 554 start-page: 693 year: 2017 end-page: 709 ident: b0030 article-title: Shallow-water models with anisotropic porosity and merging for flood modelling on Cartesian grids publication-title: J. Hydrol. – volume: 107 start-page: 233 year: 2017 end-page: 249 ident: b0085 article-title: A 1D–2D Shallow Water Equations solver for discontinuous porosity field based on a Generalized Riemann Problem publication-title: Adv. Water Resour. – volume: 50 start-page: 309 year: 2006 end-page: 345 ident: b0120 article-title: Flux and source term discretization in two-dimensional shallow water models with porosity on unstructured grids publication-title: Int. J. Numer. Meth. Fluids – volume: 140 year: 2020 ident: b0100 article-title: A second-order numerical scheme for the porous shallow water equations based on a DOT ADER augmented Riemann solver publication-title: Adv. Water Resour. – volume: 114 start-page: 83 year: 2018 end-page: 101 ident: b0060 article-title: The solution of the dam-break problem in the Porous Shallow water equations publication-title: Adv. Water Resour. – volume: 9 start-page: 1986 year: 2018 ident: b0140 article-title: Effective adaptation to rising flood risk publication-title: Nat. Commun. – year: 2001 ident: b0270 article-title: Shock-capturing Methods for Free-surface Shallow Flows – volume: 22 year: 2010 ident: b0080 article-title: Open channel flow through a linear contraction publication-title: Phys. Fluids – volume: 5 start-page: 133 year: 2007 end-page: 160 ident: b0160 article-title: A second-order well-balanced positivity preserving central-upwind scheme for the Saint-Venant system publication-title: Commun. Math. Sci. – volume: 541 start-page: 1165 year: 2016 end-page: 1184 ident: b0210 article-title: Urban flood modeling using shallow water equations with depth-dependent anisotropic porosity publication-title: J. Hydrol. – year: 1999 ident: b0265 article-title: Riemann Solvers and Numerical Methods for Fluid Dynamics – volume: 523 start-page: 680 year: 2015 end-page: 692 ident: b0150 article-title: Urban flood modeling with porous shallow-water equations: a case study of model errors in the presence of anisotropic porosity publication-title: J. Hydrol. – volume: 129 start-page: 1 year: 2019 end-page: 15 ident: b0165 article-title: Modeling subgrid-scale topographic effects on shallow marsh hydrodynamics and salinity transport publication-title: Adv. Water Resour. – year: 2017 ident: b0225 article-title: Hydrodynamic modeling of urban flood flows and disaster risk reduction publication-title: Oxford Res. Encycl. Nat. Hazard Sci. – start-page: 17 year: 2002 ident: b0005 article-title: The model city flooding experiment publication-title: Proc. 2nd Project Workshop EC Contract EVG1-CT-2001-00037 IMPACT Investigation of Extreme Flood Processes and Uncertainty. Mo i Rana (Norway) – volume: 36 start-page: 3251 year: 2000 ident: b0070 article-title: Two-dimensional shallow flow equations for partially dry areas publication-title: Water Resour. Res. – volume: 135 year: 2020 ident: b0170 article-title: On modeling subgrid-scale macro-structures in narrow twisted channels publication-title: Adv. Water Resour. – volume: 78 start-page: 87 year: 2018 end-page: 95 ident: b0215 article-title: Flexible adaptation planning for water sensitive cities publication-title: Cities – volume: 580 year: 2020 ident: b0055 article-title: Is local flood hazard assessment in urban areas significantly influenced by the physical complexity of the hydrodynamic inundation model? publication-title: J. Hydrol. – volume: 20 start-page: 59 year: 2020 end-page: 72 ident: b0095 article-title: Enhancing the resilience to flooding induced by levee breaches in lowland areas: a methodology based on numerical modelling publication-title: Nat. Hazards Earth Syst. Sci. – volume: 22 start-page: 823 year: 2012 end-page: 835 ident: b0145 article-title: Global exposure to river and coastal flooding: long term trends and changes publication-title: Glob. Environ. Change – volume: 115 start-page: 12321 year: 2018 end-page: 12325 ident: b0155 article-title: Flood-risk reduction: structural measures and diverse strategies publication-title: Proc. Natl. Acad. Sci. U.S.A. – year: 2018 ident: b0245 article-title: Investigation of distributed-porosity fields for urban flood modelling using single-porosity models. publication-title: E3S Web Conf. – volume: 538 start-page: 445 year: 2015 end-page: 457 ident: b0200 article-title: Flood risk and adaptation strategies under climate change and urban expansion: a probabilistic analysis using global data publication-title: Sci. Total Environ. – volume: 46 start-page: 45 year: 2008 end-page: 64 ident: b0250 article-title: Two-dimensional shallow-water model with porosity for urban flood modelling publication-title: J. Hydraul. Res. – volume: 362 start-page: 19 year: 2008 end-page: 38 ident: b0230 article-title: Integral formulation of shallow-water equations with anisotropic porosity for urban flood modeling publication-title: J. Hydrol. – volume: 50 start-page: 5941 year: 2014 end-page: 5957 ident: b0310 article-title: Integrated mathematical modeling of hydrological and hydrodynamic response to rainfall events in rural lowland catchments publication-title: Water Resour. Res. – volume: 20 start-page: 1567 year: 2006 end-page: 1583 ident: b0335 article-title: Urban fluvial flood modelling using a two-dimensional diffusion-wave treatment. Part 2: development of a sub-grid-scale treatment publication-title: Hydrol. Process. – volume: 109 start-page: 167 year: 2018 end-page: 181 ident: b0050 article-title: Variance based sensitivity analysis of 1D and 2D hydraulic models: an experimental urban flood case publication-title: Environ. Model. Softw. – volume: 25 start-page: 36 year: 2011 end-page: 53 ident: b0340 article-title: Interactions between subgrid-scale resolution, feature representation and grid-scale resolution in flood inundation modelling publication-title: Hydrol. Process. – volume: 15 start-page: 1011 year: 2015 end-page: 1023 ident: b0135 article-title: Representing hydrodynamically important blocking features in coastal or riverine lidar topography publication-title: Nat. Hazards Earth Syst. Sci. – volume: 568 start-page: 247 year: 2019 end-page: 259 ident: b0300 article-title: Modelling urban floods using a finite element staggered scheme with an anisotropic dual porosity model publication-title: J. Hydrol. – volume: 651 start-page: 1435 year: 2019 end-page: 1450 ident: b0320 article-title: Floods, landscape modifications and population dynamics in anthropogenic coastal lowlands: the Polesine (northern Italy) case study publication-title: Sci. Total Environ. – start-page: 729 year: 2008 end-page: 736 ident: b0020 article-title: 2D numerical modelling for hydraulic hazard assessment: a dam-break case study publication-title: River Flow 2008, Proceedings of the International Conference on Fluvial Hydraulics. Kubaba, Cesme, Izmir, Turkey – volume: 41 start-page: 49 year: 2012 end-page: 64 ident: b0240 article-title: Building treatments for urban flood inundation models and implications for predictive skill and modeling efficiency publication-title: Adv. Water Resour. – volume: 107 start-page: 85 year: 2018 end-page: 95 ident: b0325 article-title: An integrated framework for high-resolution urban flood modelling considering multiple information sources and urban features publication-title: Environ. Model. Softw. – volume: 88 start-page: 119 year: 2017 end-page: 137 ident: b0285 article-title: A non-uniform efficient grid type for GPU-parallel Shallow Water Equations models publication-title: Environ. Model. Softw. – volume: 55 start-page: 85 year: 2017 ident: 10.1016/j.jhydrol.2020.125193_b0295 article-title: Steady-flow experiments in urban areas and anisotropic porosity model publication-title: J. Hydraul. Res. doi: 10.1080/00221686.2016.1238013 – volume: 36 start-page: 3251 year: 2000 ident: 10.1016/j.jhydrol.2020.125193_b0070 article-title: Two-dimensional shallow flow equations for partially dry areas publication-title: Water Resour. Res. doi: 10.1029/2000WR900167 – volume: 362 start-page: 19 year: 2008 ident: 10.1016/j.jhydrol.2020.125193_b0230 article-title: Integral formulation of shallow-water equations with anisotropic porosity for urban flood modeling publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2008.08.009 – volume: 80 start-page: 103 year: 2016 ident: 10.1016/j.jhydrol.2020.125193_b0280 article-title: Simulation of the January 2014 flood on the Secchia River using a fast and high-resolution 2D parallel shallow-water numerical scheme publication-title: Nat. Hazards doi: 10.1007/s11069-015-1959-4 – volume: 584 year: 2020 ident: 10.1016/j.jhydrol.2020.125193_b0220 article-title: Three-dimensional urban flood inundation simulation based on digital aerial photogrammetry publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2019.124308 – volume: 126 start-page: 79 year: 2019 ident: 10.1016/j.jhydrol.2020.125193_b0235 article-title: PRIMo: parallel raster inundation model publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2019.02.007 – volume: 45 start-page: 37 year: 2007 ident: 10.1016/j.jhydrol.2020.125193_b0260 article-title: Flash flood flow experiment in a simplified urban district publication-title: J. Hydraul. Res. doi: 10.1080/00221686.2007.9521831 – volume: 6 start-page: 36021 year: 2016 ident: 10.1016/j.jhydrol.2020.125193_b0255 article-title: Global-scale river flood vulnerability in the last 50 years publication-title: Sci. Rep. doi: 10.1038/srep36021 – start-page: 17 year: 2002 ident: 10.1016/j.jhydrol.2020.125193_b0005 article-title: The model city flooding experiment – volume: 538 start-page: 445 year: 2015 ident: 10.1016/j.jhydrol.2020.125193_b0200 article-title: Flood risk and adaptation strategies under climate change and urban expansion: a probabilistic analysis using global data publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2015.08.068 – volume: 41 start-page: 49 year: 2012 ident: 10.1016/j.jhydrol.2020.125193_b0240 article-title: Building treatments for urban flood inundation models and implications for predictive skill and modeling efficiency publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2012.02.012 – volume: 16 start-page: 1413 year: 2016 ident: 10.1016/j.jhydrol.2020.125193_b0015 article-title: Hydrodynamics of long-duration urban floods: experiments and numerical modelling publication-title: Nat. Hazards Earth Syst. Sci. doi: 10.5194/nhess-16-1413-2016 – volume: 62 start-page: 903 year: 2010 ident: 10.1016/j.jhydrol.2020.125193_b0035 article-title: Unstructured finite volume discretization of two-dimensional depth-averaged shallow water equations with porosity publication-title: Int. J. Numer. Methods Fluids doi: 10.1002/fld.2107 – volume: 494 start-page: 10 year: 2013 ident: 10.1016/j.jhydrol.2020.125193_b0195 article-title: Impact of topographic obstacles on the discharge distribution in open-channel bifurcations publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2013.04.023 – volume: 129 start-page: 1 year: 2019 ident: 10.1016/j.jhydrol.2020.125193_b0165 article-title: Modeling subgrid-scale topographic effects on shallow marsh hydrodynamics and salinity transport publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2019.05.004 – volume: 32 start-page: 873 year: 2009 ident: 10.1016/j.jhydrol.2020.125193_b0180 article-title: Numerical resolution of well-balanced shallow water equations with complex source terms publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2009.02.010 – volume: 109 start-page: 167 year: 2018 ident: 10.1016/j.jhydrol.2020.125193_b0050 article-title: Variance based sensitivity analysis of 1D and 2D hydraulic models: an experimental urban flood case publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2018.08.008 – volume: 554 start-page: 693 year: 2017 ident: 10.1016/j.jhydrol.2020.125193_b0030 article-title: Shallow-water models with anisotropic porosity and merging for flood modelling on Cartesian grids publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2017.09.051 – volume: 426–427 start-page: 1 year: 2012 ident: 10.1016/j.jhydrol.2020.125193_b0045 article-title: A coarse-grid approach to representing building blockage effects in 2D urban flood modelling publication-title: J. Hydrol. – volume: 136 year: 2020 ident: 10.1016/j.jhydrol.2020.125193_b0290 article-title: On integral and differential porosity models for urban flooding simulation publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2019.103455 – volume: 59 start-page: 82 year: 2013 ident: 10.1016/j.jhydrol.2020.125193_b0305 article-title: Mathematical modeling of flooding due to river bank failure publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2013.05.011 – volume: 57 start-page: 60 year: 2014 ident: 10.1016/j.jhydrol.2020.125193_b0275 article-title: GPU-enhanced Finite Volume Shallow Water solver for fast flood simulations publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2014.02.003 – volume: 134 start-page: 387 year: 2016 ident: 10.1016/j.jhydrol.2020.125193_b0010 article-title: The impacts of climate change on river flood risk at the global scale publication-title: Clim. Change doi: 10.1007/s10584-014-1084-5 – volume: 37 start-page: 40 year: 2012 ident: 10.1016/j.jhydrol.2020.125193_b0105 article-title: Multiple porosity shallow water models for macroscopic modelling of urban floods publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2011.11.002 – start-page: 72 year: 1994 ident: 10.1016/j.jhydrol.2020.125193_b0075 article-title: A new set of equations for very shallow water and partially dry areas suitable to 2D numerical models – year: 1999 ident: 10.1016/j.jhydrol.2020.125193_b0265 – volume: 135 year: 2020 ident: 10.1016/j.jhydrol.2020.125193_b0170 article-title: On modeling subgrid-scale macro-structures in narrow twisted channels publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2019.103465 – volume: 46 start-page: 45 year: 2008 ident: 10.1016/j.jhydrol.2020.125193_b0250 article-title: Two-dimensional shallow-water model with porosity for urban flood modelling publication-title: J. Hydraul. Res. doi: 10.1080/00221686.2008.9521842 – volume: 109 start-page: 133 year: 2017 ident: 10.1016/j.jhydrol.2020.125193_b0115 article-title: A critical assessment of flux and source term closures in shallow water models with porosity for urban flood simulations publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2017.09.002 – volume: 122 start-page: 1 year: 2018 ident: 10.1016/j.jhydrol.2020.125193_b0130 article-title: Flux closures and source term models for shallow water models with depth-dependent integral porosity publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2018.09.014 – volume: 15 start-page: 1011 year: 2015 ident: 10.1016/j.jhydrol.2020.125193_b0135 article-title: Representing hydrodynamically important blocking features in coastal or riverine lidar topography publication-title: Nat. Hazards Earth Syst. Sci. doi: 10.5194/nhess-15-1011-2015 – volume: 88 start-page: 119 year: 2017 ident: 10.1016/j.jhydrol.2020.125193_b0285 article-title: A non-uniform efficient grid type for GPU-parallel Shallow Water Equations models publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2016.11.012 – year: 2001 ident: 10.1016/j.jhydrol.2020.125193_b0270 – volume: 523 start-page: 680 year: 2015 ident: 10.1016/j.jhydrol.2020.125193_b0150 article-title: Urban flood modeling with porous shallow-water equations: a case study of model errors in the presence of anisotropic porosity publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2015.01.059 – volume: 13 year: 2018 ident: 10.1016/j.jhydrol.2020.125193_b0330 article-title: Estimates of present and future flood risk in the conterminous United States publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/aaac65 – volume: 115 start-page: 12321 year: 2018 ident: 10.1016/j.jhydrol.2020.125193_b0155 article-title: Flood-risk reduction: structural measures and diverse strategies publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1818227115 – volume: 33 start-page: 476 year: 2007 ident: 10.1016/j.jhydrol.2020.125193_b0065 article-title: Mathematical modeling of tidal hydrodynamics in shallow lagoons: a review of open issues and applications to the Venice lagoon publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2006.07.009 – volume: 107 start-page: 233 year: 2017 ident: 10.1016/j.jhydrol.2020.125193_b0085 article-title: A 1D–2D Shallow Water Equations solver for discontinuous porosity field based on a Generalized Riemann Problem publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2017.06.023 – volume: 114 start-page: 83 year: 2018 ident: 10.1016/j.jhydrol.2020.125193_b0060 article-title: The solution of the dam-break problem in the Porous Shallow water equations publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2018.01.026 – volume: 107 start-page: 43 year: 2017 ident: 10.1016/j.jhydrol.2020.125193_b0110 article-title: Consistency and bicharacteristic analysis of integral porosity shallow water models. Explaining model oversensitivity to mesh design publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2017.06.008 – volume: 107 start-page: 85 year: 2018 ident: 10.1016/j.jhydrol.2020.125193_b0325 article-title: An integrated framework for high-resolution urban flood modelling considering multiple information sources and urban features publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2018.06.010 – volume: 125 start-page: 98 year: 2019 ident: 10.1016/j.jhydrol.2020.125193_b0090 article-title: Flood inundation modeling in urbanized areas: a mesh-independent porosity approach with anisotropic friction publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2019.01.010 – volume: 9 start-page: 1986 year: 2018 ident: 10.1016/j.jhydrol.2020.125193_b0140 article-title: Effective adaptation to rising flood risk publication-title: Nat. Commun. doi: 10.1038/s41467-018-04396-1 – volume: 40 start-page: 7447 issue: 17–18 year: 2015 ident: 10.1016/j.jhydrol.2020.125193_b0205 article-title: Shallow water equations with depth-dependent anisotropic porosity for subgrid-scale topography publication-title: Appl. Math. Model. – volume: 78 start-page: 87 year: 2018 ident: 10.1016/j.jhydrol.2020.125193_b0215 article-title: Flexible adaptation planning for water sensitive cities publication-title: Cities doi: 10.1016/j.cities.2018.01.022 – start-page: accepted year: 2020 ident: 10.1016/j.jhydrol.2020.125193_b0190 article-title: Optimal floodgate operation for river flood management: the case study of Padova (Italy) publication-title: J. Hydrol.: Reg. Stud. – volume: 470–471 start-page: 1 year: 2012 ident: 10.1016/j.jhydrol.2020.125193_b0040 article-title: Multi-layered coarse grid modelling in 2D urban flood simulations publication-title: J. Hydrol. – volume: 38 start-page: 221 year: 2009 ident: 10.1016/j.jhydrol.2020.125193_b0175 article-title: Adaptive quadtree simulation of shallow flows with wet–dry fronts over complex topography publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2008.02.008 – year: 2018 ident: 10.1016/j.jhydrol.2020.125193_b0245 article-title: Investigation of distributed-porosity fields for urban flood modelling using single-porosity models. – volume: 20 start-page: 1567 year: 2006 ident: 10.1016/j.jhydrol.2020.125193_b0335 article-title: Urban fluvial flood modelling using a two-dimensional diffusion-wave treatment. Part 2: development of a sub-grid-scale treatment publication-title: Hydrol. Process. doi: 10.1002/hyp.5936 – volume: 63 start-page: 1151 year: 2020 ident: 10.1016/j.jhydrol.2020.125193_b0185 article-title: Flood resilience: a systematic review publication-title: J. Environ. Plan. Manage. doi: 10.1080/09640568.2019.1641474 – volume: 104 start-page: 1 year: 2017 ident: 10.1016/j.jhydrol.2020.125193_b0315 article-title: Modeling anisotropy in free-surface overland and shallow inundation flows publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2017.03.007 – volume: 140 year: 2020 ident: 10.1016/j.jhydrol.2020.125193_b0100 article-title: A second-order numerical scheme for the porous shallow water equations based on a DOT ADER augmented Riemann solver publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2020.103587 – volume: 5 start-page: 133 year: 2007 ident: 10.1016/j.jhydrol.2020.125193_b0160 article-title: A second-order well-balanced positivity preserving central-upwind scheme for the Saint-Venant system publication-title: Commun. Math. Sci. doi: 10.4310/CMS.2007.v5.n1.a6 – volume: 25 start-page: 36 year: 2011 ident: 10.1016/j.jhydrol.2020.125193_b0340 article-title: Interactions between subgrid-scale resolution, feature representation and grid-scale resolution in flood inundation modelling publication-title: Hydrol. Process. doi: 10.1002/hyp.7813 – volume: 568 start-page: 247 year: 2019 ident: 10.1016/j.jhydrol.2020.125193_b0300 article-title: Modelling urban floods using a finite element staggered scheme with an anisotropic dual porosity model publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2018.10.055 – volume: 651 start-page: 1435 year: 2019 ident: 10.1016/j.jhydrol.2020.125193_b0320 article-title: Floods, landscape modifications and population dynamics in anthropogenic coastal lowlands: the Polesine (northern Italy) case study publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.09.121 – volume: 22 year: 2010 ident: 10.1016/j.jhydrol.2020.125193_b0080 article-title: Open channel flow through a linear contraction publication-title: Phys. Fluids doi: 10.1063/1.3370334 – start-page: 117 year: 1989 ident: 10.1016/j.jhydrol.2020.125193_b0025 article-title: Simulation of a levee-breaking submersion of planes and urban areas – volume: 50 start-page: 5941 year: 2014 ident: 10.1016/j.jhydrol.2020.125193_b0310 article-title: Integrated mathematical modeling of hydrological and hydrodynamic response to rainfall events in rural lowland catchments publication-title: Water Resour. Res. doi: 10.1002/2013WR014293 – volume: 103 start-page: 16 year: 2017 ident: 10.1016/j.jhydrol.2020.125193_b0125 article-title: Dual integral porosity shallow water model for urban flood modelling publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2017.02.009 – year: 2017 ident: 10.1016/j.jhydrol.2020.125193_b0225 article-title: Hydrodynamic modeling of urban flood flows and disaster risk reduction publication-title: Oxford Res. Encycl. Nat. Hazard Sci. doi: 10.1093/acrefore/9780199389407.013.127 – volume: 541 start-page: 1165 year: 2016 ident: 10.1016/j.jhydrol.2020.125193_b0210 article-title: Urban flood modeling using shallow water equations with depth-dependent anisotropic porosity publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2016.08.025 – volume: 20 start-page: 59 year: 2020 ident: 10.1016/j.jhydrol.2020.125193_b0095 article-title: Enhancing the resilience to flooding induced by levee breaches in lowland areas: a methodology based on numerical modelling publication-title: Nat. Hazards Earth Syst. Sci. doi: 10.5194/nhess-20-59-2020 – volume: 50 start-page: 309 year: 2006 ident: 10.1016/j.jhydrol.2020.125193_b0120 article-title: Flux and source term discretization in two-dimensional shallow water models with porosity on unstructured grids publication-title: Int. J. Numer. Meth. Fluids doi: 10.1002/fld.1059 – volume: 580 year: 2020 ident: 10.1016/j.jhydrol.2020.125193_b0055 article-title: Is local flood hazard assessment in urban areas significantly influenced by the physical complexity of the hydrodynamic inundation model? publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2019.124231 – volume: 22 start-page: 823 year: 2012 ident: 10.1016/j.jhydrol.2020.125193_b0145 article-title: Global exposure to river and coastal flooding: long term trends and changes publication-title: Glob. Environ. Change doi: 10.1016/j.gloenvcha.2012.07.004 – start-page: 729 year: 2008 ident: 10.1016/j.jhydrol.2020.125193_b0020 article-title: 2D numerical modelling for hydraulic hazard assessment: a dam-break case study |
| SSID | ssj0000334 |
| Score | 2.4829543 |
| Snippet | •Flood modelling in real urban areas is a challenge for differential anisotropic porosity models.•Direction-dependent, cell-based conveyance porosity is not... In the framework of porosity models for large-scale urban floods, this work presents a method to compute the spatial distribution of the porosity parameters of... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 125193 |
| SubjectTerms | algorithms Anisotropic friction anisotropy Conveyance porosity ingredients isotropy momentum porosity Porosity model Porous shallow water equations preferential flow Spatially-distributed porosity field Structured grid Urban flood |
| Title | Floodwater pathways in urban areas: A method to compute porosity fields for anisotropic subgrid models in differential form |
| URI | https://dx.doi.org/10.1016/j.jhydrol.2020.125193 https://www.proquest.com/docview/2524304767 |
| Volume | 589 |
| WOSCitedRecordID | wos000568830400058&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect database customDbUrl: eissn: 1879-2707 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000334 issn: 0022-1694 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWFgkuiKcoLxmJ2yqBjZ044bZCXR5CVQ8F7S1yYptm1SarJNuHuPLDGcd2Egql9MAlWkWx18p8Hn92ZuZD6BV7E3E5k4GnkpB7VAYK_GAkPBkFGeyCAhpnXaLwZ7a3Fy-Xyf5k8sPlwpwcsbKMz86S9X81NdwDY-vU2WuYu-8UbsBvMDpcwexw_SfDL3Qo-inXxQ-13PApP-9CXjd1BlOZ6xh0k41utKM198yNssMUqHjVhWh0YW2NDbAsmqqtq3WRT5tN9q0uhFHPMXG0Vl6lLWwe5CVc9_Bc1KbYExDa-bEuziA0EvtTiIXUcvOFTbmBedqvFl9h3a5GyfDTfX98UgHbUhfzNs4cmEVG1Nh539AoCFn_qemWUUz8zbWbU4aVvzJD9vU_-MPzv5bSvrDE9YGHLqZtldpuUt1Narq5gbYDFibgG7fnH3eXn4YVnRDqqs7r8Q-ZYK__OJ7LOM6F1b6jMAd30R1rDzw3mLmHJrK8j269l7Zq-QP0fcAOdtjBRYk77OAOO2_xHBvk4LbCFjnYIQcb5GCAAh4hB1vkYIMc3eUYOfrx44foy2L34N0Hz6pzeDkNw9YTgZgREsUiZipnPCQ8F5GKVEIkpRx4vqaqwJ8TlUhGaK6SRFGiQhkRJsADkEdoq6xK-RhhyRXQYq44iylsh4MsU0zQSM6Au8pQqB1E3ftMc1u6XiuoHKV_tecO8vtma1O75aoGsTNWagmoIZYpgPCqpi-dcVNw0PqrGy9ltWnSIAyo_rYdsSfXHc9TdHuYR8_QVltv5HN0Mz9pi6Z-YVH6E7Lqut4 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Floodwater+pathways+in+urban+areas%3A+A+method+to+compute+porosity+fields+for+anisotropic+subgrid+models+in+differential+form&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Ferrari%2C+Alessia&rft.au=Viero%2C+Daniele+P.&rft.date=2020-10-01&rft.issn=0022-1694&rft.volume=589&rft.spage=125193&rft_id=info:doi/10.1016%2Fj.jhydrol.2020.125193&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jhydrol_2020_125193 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon |