Floodwater pathways in urban areas: A method to compute porosity fields for anisotropic subgrid models in differential form

•Flood modelling in real urban areas is a challenge for differential anisotropic porosity models.•Direction-dependent, cell-based conveyance porosity is not trivial to estimate.•A method is proposed to extract conveyance porosity fields from building footprints.•Straightforward application to comple...

Full description

Saved in:
Bibliographic Details
Published in:Journal of hydrology (Amsterdam) Vol. 589; p. 125193
Main Authors: Ferrari, Alessia, Viero, Daniele P.
Format: Journal Article
Language:English
Published: Elsevier B.V 01.10.2020
Subjects:
ISSN:0022-1694, 1879-2707
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Flood modelling in real urban areas is a challenge for differential anisotropic porosity models.•Direction-dependent, cell-based conveyance porosity is not trivial to estimate.•A method is proposed to extract conveyance porosity fields from building footprints.•Straightforward application to complex urban layouts provides accurate results.•A Fortran numerical implementation of the proposed method is made available. In the framework of porosity models for large-scale urban floods, this work presents a method to compute the spatial distribution of the porosity parameters of complex urban areas by analyzing the footprints of buildings and obstacles. Precisely, an algorithm is described that estimates the four parameters required by the differential, dual-porosity formulation we recently presented. In this formulation, beside the common isotropic porosity accounting for the reduced storage volume due to buildings, a cell-based conveyance porosity is introduced in the momentum equations in tensor form to model anisotropic resistances and alterations in the flow direction due to presence of preferential pathways such as streets. A cell-averaged description of the spatial connectivity in the urban medium and of the preferential flow directions is the main ingredient for robust and mesh-independent estimates. To achieve this goal, the algorithm here presented automatically extracts the spatially distributed porosity fields of urban layouts relying only on geometrical information, thus avoiding additional calibration effort. The proposed method is described with the aid of schematic applications and then tested by simulating the flooding of complex urban areas using structured Cartesian grids. A Fortran implementation of the algorithm is made available for free download and use.
AbstractList •Flood modelling in real urban areas is a challenge for differential anisotropic porosity models.•Direction-dependent, cell-based conveyance porosity is not trivial to estimate.•A method is proposed to extract conveyance porosity fields from building footprints.•Straightforward application to complex urban layouts provides accurate results.•A Fortran numerical implementation of the proposed method is made available. In the framework of porosity models for large-scale urban floods, this work presents a method to compute the spatial distribution of the porosity parameters of complex urban areas by analyzing the footprints of buildings and obstacles. Precisely, an algorithm is described that estimates the four parameters required by the differential, dual-porosity formulation we recently presented. In this formulation, beside the common isotropic porosity accounting for the reduced storage volume due to buildings, a cell-based conveyance porosity is introduced in the momentum equations in tensor form to model anisotropic resistances and alterations in the flow direction due to presence of preferential pathways such as streets. A cell-averaged description of the spatial connectivity in the urban medium and of the preferential flow directions is the main ingredient for robust and mesh-independent estimates. To achieve this goal, the algorithm here presented automatically extracts the spatially distributed porosity fields of urban layouts relying only on geometrical information, thus avoiding additional calibration effort. The proposed method is described with the aid of schematic applications and then tested by simulating the flooding of complex urban areas using structured Cartesian grids. A Fortran implementation of the algorithm is made available for free download and use.
In the framework of porosity models for large-scale urban floods, this work presents a method to compute the spatial distribution of the porosity parameters of complex urban areas by analyzing the footprints of buildings and obstacles. Precisely, an algorithm is described that estimates the four parameters required by the differential, dual-porosity formulation we recently presented. In this formulation, beside the common isotropic porosity accounting for the reduced storage volume due to buildings, a cell-based conveyance porosity is introduced in the momentum equations in tensor form to model anisotropic resistances and alterations in the flow direction due to presence of preferential pathways such as streets. A cell-averaged description of the spatial connectivity in the urban medium and of the preferential flow directions is the main ingredient for robust and mesh-independent estimates. To achieve this goal, the algorithm here presented automatically extracts the spatially distributed porosity fields of urban layouts relying only on geometrical information, thus avoiding additional calibration effort. The proposed method is described with the aid of schematic applications and then tested by simulating the flooding of complex urban areas using structured Cartesian grids. A Fortran implementation of the algorithm is made available for free download and use.
ArticleNumber 125193
Author Ferrari, Alessia
Viero, Daniele P.
Author_xml – sequence: 1
  givenname: Alessia
  surname: Ferrari
  fullname: Ferrari, Alessia
  email: alessia.ferrari@unipr.it
  organization: Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze 181/A, 43124 Parma, Italy
– sequence: 2
  givenname: Daniele P.
  surname: Viero
  fullname: Viero, Daniele P.
  email: daniele.viero@unipd.it
  organization: Department of Civil, Environmental and Architectural Engineering, University of Padova, via Loredan 20, 35131 Padova, Italy
BookMark eNqFkE1rGzEQhkVJoE7Sn1DQsZd19S1veygh5KMQ6KU9C1ka1TLa1VbSNpj--a7jnHLJXAaG93lhngt0NuYREPpIyZoSqj7v1_vdwZec1oyw5cYk7fk7tKIb3XdME32GVoQw1lHVi_footY9WYZzsUL_7lLO_sk2KHiybfdkDxXHEc9la0dsC9j6BV_jAdoue9wydnmY5gZ4yiXX2A44REi-4pALtmOsuZU8RYfrvP1dosdD9pCeK30MAQqMLdp0jA9X6DzYVOHDy75Ev-5uf948dI8_7r_fXD92TkjZOs885Vxt_EYHp63k1nkVVOg5CGEFVYJKqSjrQw-aCxf6PggeJCiu_WYL_BJ9OvVOJf-ZoTYzxOogJTtCnqthkglOhFZ6icpT1C3f1QLBTCUOthwMJeYo2-zNi2xzlG1Oshfu6yvOxWZbzGMrNqY36W8nejEFfyMUU12E0YGPBVwzPsc3Gv4DKFSjKQ
CitedBy_id crossref_primary_10_1016_j_jhydrol_2021_127034
crossref_primary_10_1016_j_jhydrol_2022_128687
crossref_primary_10_1016_j_jhydrol_2023_129192
crossref_primary_10_3390_urbansci7010017
crossref_primary_10_1080_00221686_2022_2106598
crossref_primary_10_1016_j_jhydrol_2024_131239
crossref_primary_10_3389_frwa_2024_1520913
crossref_primary_10_1061_JHYEFF_HEENG_5888
crossref_primary_10_1080_00221686_2023_2201210
crossref_primary_10_5194_hess_25_2843_2021
crossref_primary_10_1016_j_jhydrol_2024_131232
crossref_primary_10_3390_w13070960
crossref_primary_10_1016_j_compfluid_2022_105360
crossref_primary_10_1016_j_jhydrol_2022_127485
crossref_primary_10_1016_j_jhydrol_2022_128596
crossref_primary_10_1007_s11431_022_2393_2
crossref_primary_10_1007_s11069_025_07484_w
crossref_primary_10_1016_j_jhydrol_2022_127763
crossref_primary_10_1016_j_scs_2023_104485
crossref_primary_10_1016_j_scitotenv_2023_168718
crossref_primary_10_3390_geosciences13040112
crossref_primary_10_1088_1742_6596_2162_1_012020
crossref_primary_10_1038_s41597_020_00791_w
crossref_primary_10_1063_5_0214441
crossref_primary_10_3390_hydrology9030050
Cites_doi 10.1080/00221686.2016.1238013
10.1029/2000WR900167
10.1016/j.jhydrol.2008.08.009
10.1007/s11069-015-1959-4
10.1016/j.jhydrol.2019.124308
10.1016/j.advwatres.2019.02.007
10.1080/00221686.2007.9521831
10.1038/srep36021
10.1016/j.scitotenv.2015.08.068
10.1016/j.advwatres.2012.02.012
10.5194/nhess-16-1413-2016
10.1002/fld.2107
10.1016/j.jhydrol.2013.04.023
10.1016/j.advwatres.2019.05.004
10.1016/j.advwatres.2009.02.010
10.1016/j.envsoft.2018.08.008
10.1016/j.jhydrol.2017.09.051
10.1016/j.advwatres.2019.103455
10.1016/j.advwatres.2013.05.011
10.1016/j.envsoft.2014.02.003
10.1007/s10584-014-1084-5
10.1016/j.advwatres.2011.11.002
10.1016/j.advwatres.2019.103465
10.1080/00221686.2008.9521842
10.1016/j.advwatres.2017.09.002
10.1016/j.advwatres.2018.09.014
10.5194/nhess-15-1011-2015
10.1016/j.envsoft.2016.11.012
10.1016/j.jhydrol.2015.01.059
10.1088/1748-9326/aaac65
10.1073/pnas.1818227115
10.1016/j.cageo.2006.07.009
10.1016/j.advwatres.2017.06.023
10.1016/j.advwatres.2018.01.026
10.1016/j.advwatres.2017.06.008
10.1016/j.envsoft.2018.06.010
10.1016/j.advwatres.2019.01.010
10.1038/s41467-018-04396-1
10.1016/j.cities.2018.01.022
10.1016/j.compfluid.2008.02.008
10.1002/hyp.5936
10.1080/09640568.2019.1641474
10.1016/j.advwatres.2017.03.007
10.1016/j.advwatres.2020.103587
10.4310/CMS.2007.v5.n1.a6
10.1002/hyp.7813
10.1016/j.jhydrol.2018.10.055
10.1016/j.scitotenv.2018.09.121
10.1063/1.3370334
10.1002/2013WR014293
10.1016/j.advwatres.2017.02.009
10.1093/acrefore/9780199389407.013.127
10.1016/j.jhydrol.2016.08.025
10.5194/nhess-20-59-2020
10.1002/fld.1059
10.1016/j.jhydrol.2019.124231
10.1016/j.gloenvcha.2012.07.004
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.jhydrol.2020.125193
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1879-2707
ExternalDocumentID 10_1016_j_jhydrol_2020_125193
S0022169420306533
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABEFU
ABFNM
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACLVX
ACNCT
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
D-I
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
K-O
KOM
LW9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SPD
SSA
SSE
SSZ
T5K
TN5
UQL
VOH
WUQ
Y6R
ZCA
ZMT
ZY4
~02
~G-
~KM
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7S9
L.6
ID FETCH-LOGICAL-c455t-d2d13368d87fc7a53acd6f6f93e44a41641556129f9e734cf99f43f5e637d8be3
ISICitedReferencesCount 30
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000568830400058&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-1694
IngestDate Sat Sep 27 21:41:53 EDT 2025
Sat Nov 29 07:30:17 EST 2025
Tue Nov 18 21:55:56 EST 2025
Fri Feb 23 02:43:17 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Urban flood
Spatially-distributed porosity field
Anisotropic friction
Structured grid
Porosity model
Conveyance porosity
Porous shallow water equations
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c455t-d2d13368d87fc7a53acd6f6f93e44a41641556129f9e734cf99f43f5e637d8be3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://hdl.handle.net/11577/3342869
PQID 2524304767
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2524304767
crossref_primary_10_1016_j_jhydrol_2020_125193
crossref_citationtrail_10_1016_j_jhydrol_2020_125193
elsevier_sciencedirect_doi_10_1016_j_jhydrol_2020_125193
PublicationCentury 2000
PublicationDate October 2020
2020-10-00
20201001
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: October 2020
PublicationDecade 2020
PublicationTitle Journal of hydrology (Amsterdam)
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Kundzewicz, Hegger, Matczak, Driessen (b0155) 2018; 115
Ferrari, Vacondio, Mignosa (b0100) 2020; 140
Viero, Roder, Matticchio, Defina, Tarolli (b0320) 2019; 651
Yu, Lane (b0335) 2006; 20
Wang, Chen, Fu, Djordjević, Zhang, Savić (b0325) 2018; 107
Cozzolino, Pepe, Cimorelli, D’Aniello, Della Morte, Pianese (b0060) 2018; 114
Guinot, Soares-Frazão (b0120) 2006; 50
Soares-Frazão, Franzini, Linkens, Snaps (b0245) 2018
Toro (b0265) 1999
Viero, Valipour (b0315) 2017; 104
Testa, Zuccalà, Alcrudo, Mulet, Soares-Frazão (b0260) 2007; 45
Guinot (b0115) 2017; 109
Özgen, Zhao, Liang, Hinkelmann (b0210) 2016; 541
Vacondio, Dal Palù, Mignosa (b0275) 2014; 57
Guinot, Sanders, Schubert (b0125) 2017; 103
Viero (b0300) 2019; 568
Mel, Viero, Carniello, D’Alpaos (b0190) 2020
Guinot (b0110) 2017; 107
Yu, Lane (b0340) 2011; 25
Costabile, Costanzo, De Lorenzo, Macchione (b0055) 2020; 580
Tanoue, Hirabayashi, Ikeuchi (b0255) 2016; 6
Bruwier, Archambeau, Erpicum, Pirotton, Dewals (b0030) 2017; 554
Vacondio, Aureli, Ferrari, Mignosa, Dal Palù (b0280) 2016; 80
Radhakrishnan, Pathirana, Ashley, Gersonius, Zevenbergen (b0215) 2018; 78
Wing, Bates, Smith, Sampson, Johnson, Fargione, Morefield (b0330) 2018; 13
Braschi, Gallati (b0025) 1989
Chen, Evans, Djordjević, Savić (b0040) 2012; 470–471
Sanders, Schubert (b0235) 2019; 126
Alcrudo, Garcia-Navarro, Brufau, Murillo, Garcia, Mulet, Testa, Zuccalà (b0005) 2002
Defina (b0070) 2000; 36
Defina, D’Alpaos, Matticchio (b0075) 1994
Li, Hodges (b0165) 2019; 129
Toro (b0270) 2001
Jongman, Ward, Aerts (b0145) 2012; 22
Li, Hodges (b0170) 2020; 135
Soares-Frazao, Lhomme, Guinot, Zech (b0250) 2008; 46
Kim, Sanders, Famiglietti, Guinot (b0150) 2015; 523
Rong, Zhang, Zheng, Hu, Peng, Feng (b0220) 2020; 584
Cea, Vázquez-Cendón (b0035) 2010; 62
Guinot, Delenne, Rousseau, Boutron (b0130) 2018; 122
Muis, Güneralp, Jongman, Aerts, Ward (b0200) 2015; 538
Vacondio, Dal Palù, Ferrari, Mignosa, Aureli, Dazzi (b0285) 2017; 88
Guinot (b0105) 2012; 37
Liang, Borthwick (b0175) 2009; 38
Hodges (b0135) 2015; 15
Ferrari, Viero, Vacondio, Defina, Mignosa (b0090) 2019; 125
Liang, Marche (b0180) 2009; 32
Kurganov, Petrova (b0160) 2007; 5
Viero, Peruzzo, Carniello, Defina (b0310) 2014; 50
Arnell, Gosling (b0010) 2016; 134
Aureli, Maranzoni, Mignosa, Ziveri (b0020) 2008
Sanders (b0225) 2017
Arrault, Finaud-Guyot, Archambeau, Bruwier, Erpicum, Pirotton, Dewals (b0015) 2016; 16
Jongman (b0140) 2018; 9
Viero, D’Alpaos, Carniello, Defina (b0305) 2013; 59
Chen, Garambois, Finaud-Guyot, Dellinger, Mosé, Terfous, Ghenaim (b0050) 2018; 109
D’Alpaos, Defina, D’Alpaos, Defina (b0065) 2007; 33
Varra, Pepe, Cimorelli, Della Morte, Cozzolino (b0290) 2020; 136
Schubert, Sanders (b0240) 2012; 41
Ferrari, Vacondio, Dazzi, Mignosa (b0085) 2017; 107
Chen, Evans, Djordjević, Savić (b0045) 2012; 426–427
Defina, Viero (b0080) 2010; 22
Özgen, Liang, Hinkelmann (b0205) 2015; 40
Sanders, Schubert, Gallegos (b0230) 2008; 362
Mignot, Zeng, Dominguez, Li, Rivière, Bazin (b0195) 2013; 494
Ferrari, Dazzi, Vacondio, Mignosa (b0095) 2020; 20
McClymont, Morrison, Beevers, Carmen (b0185) 2020; 63
Velickovic, Zech, Soares-Frazão (b0295) 2017; 55
Soares-Frazao (10.1016/j.jhydrol.2020.125193_b0250) 2008; 46
Toro (10.1016/j.jhydrol.2020.125193_b0265) 1999
Liang (10.1016/j.jhydrol.2020.125193_b0180) 2009; 32
Kundzewicz (10.1016/j.jhydrol.2020.125193_b0155) 2018; 115
Tanoue (10.1016/j.jhydrol.2020.125193_b0255) 2016; 6
Ferrari (10.1016/j.jhydrol.2020.125193_b0085) 2017; 107
D’Alpaos (10.1016/j.jhydrol.2020.125193_b0065) 2007; 33
Varra (10.1016/j.jhydrol.2020.125193_b0290) 2020; 136
Defina (10.1016/j.jhydrol.2020.125193_b0075) 1994
Alcrudo (10.1016/j.jhydrol.2020.125193_b0005) 2002
Özgen (10.1016/j.jhydrol.2020.125193_b0210) 2016; 541
Bruwier (10.1016/j.jhydrol.2020.125193_b0030) 2017; 554
Jongman (10.1016/j.jhydrol.2020.125193_b0140) 2018; 9
Viero (10.1016/j.jhydrol.2020.125193_b0315) 2017; 104
Rong (10.1016/j.jhydrol.2020.125193_b0220) 2020; 584
Guinot (10.1016/j.jhydrol.2020.125193_b0130) 2018; 122
Arrault (10.1016/j.jhydrol.2020.125193_b0015) 2016; 16
Costabile (10.1016/j.jhydrol.2020.125193_b0055) 2020; 580
Liang (10.1016/j.jhydrol.2020.125193_b0175) 2009; 38
Mignot (10.1016/j.jhydrol.2020.125193_b0195) 2013; 494
Chen (10.1016/j.jhydrol.2020.125193_b0040) 2012; 470–471
Defina (10.1016/j.jhydrol.2020.125193_b0080) 2010; 22
Jongman (10.1016/j.jhydrol.2020.125193_b0145) 2012; 22
Schubert (10.1016/j.jhydrol.2020.125193_b0240) 2012; 41
Sanders (10.1016/j.jhydrol.2020.125193_b0230) 2008; 362
Ferrari (10.1016/j.jhydrol.2020.125193_b0095) 2020; 20
Soares-Frazão (10.1016/j.jhydrol.2020.125193_b0245) 2018
Arnell (10.1016/j.jhydrol.2020.125193_b0010) 2016; 134
Viero (10.1016/j.jhydrol.2020.125193_b0305) 2013; 59
Yu (10.1016/j.jhydrol.2020.125193_b0335) 2006; 20
Özgen (10.1016/j.jhydrol.2020.125193_b0205) 2015; 40
Cea (10.1016/j.jhydrol.2020.125193_b0035) 2010; 62
Testa (10.1016/j.jhydrol.2020.125193_b0260) 2007; 45
Guinot (10.1016/j.jhydrol.2020.125193_b0120) 2006; 50
Li (10.1016/j.jhydrol.2020.125193_b0165) 2019; 129
Vacondio (10.1016/j.jhydrol.2020.125193_b0280) 2016; 80
Aureli (10.1016/j.jhydrol.2020.125193_b0020) 2008
Viero (10.1016/j.jhydrol.2020.125193_b0320) 2019; 651
Ferrari (10.1016/j.jhydrol.2020.125193_b0100) 2020; 140
Chen (10.1016/j.jhydrol.2020.125193_b0050) 2018; 109
Cozzolino (10.1016/j.jhydrol.2020.125193_b0060) 2018; 114
Yu (10.1016/j.jhydrol.2020.125193_b0340) 2011; 25
McClymont (10.1016/j.jhydrol.2020.125193_b0185) 2020; 63
Vacondio (10.1016/j.jhydrol.2020.125193_b0275) 2014; 57
Viero (10.1016/j.jhydrol.2020.125193_b0310) 2014; 50
Sanders (10.1016/j.jhydrol.2020.125193_b0225) 2017
Guinot (10.1016/j.jhydrol.2020.125193_b0115) 2017; 109
Guinot (10.1016/j.jhydrol.2020.125193_b0125) 2017; 103
Braschi (10.1016/j.jhydrol.2020.125193_b0025) 1989
Wing (10.1016/j.jhydrol.2020.125193_b0330) 2018; 13
Kim (10.1016/j.jhydrol.2020.125193_b0150) 2015; 523
Guinot (10.1016/j.jhydrol.2020.125193_b0110) 2017; 107
Viero (10.1016/j.jhydrol.2020.125193_b0300) 2019; 568
Wang (10.1016/j.jhydrol.2020.125193_b0325) 2018; 107
Ferrari (10.1016/j.jhydrol.2020.125193_b0090) 2019; 125
Guinot (10.1016/j.jhydrol.2020.125193_b0105) 2012; 37
Hodges (10.1016/j.jhydrol.2020.125193_b0135) 2015; 15
Sanders (10.1016/j.jhydrol.2020.125193_b0235) 2019; 126
Velickovic (10.1016/j.jhydrol.2020.125193_b0295) 2017; 55
Defina (10.1016/j.jhydrol.2020.125193_b0070) 2000; 36
Mel (10.1016/j.jhydrol.2020.125193_b0190) 2020
Kurganov (10.1016/j.jhydrol.2020.125193_b0160) 2007; 5
Li (10.1016/j.jhydrol.2020.125193_b0170) 2020; 135
Vacondio (10.1016/j.jhydrol.2020.125193_b0285) 2017; 88
Radhakrishnan (10.1016/j.jhydrol.2020.125193_b0215) 2018; 78
Chen (10.1016/j.jhydrol.2020.125193_b0045) 2012; 426–427
Toro (10.1016/j.jhydrol.2020.125193_b0270) 2001
Muis (10.1016/j.jhydrol.2020.125193_b0200) 2015; 538
References_xml – start-page: 72
  year: 1994
  end-page: 81
  ident: b0075
  article-title: A new set of equations for very shallow water and partially dry areas suitable to 2D numerical models
  publication-title: Modelling Flood Propagation Over Initially Dry Areas
– volume: 494
  start-page: 10
  year: 2013
  end-page: 19
  ident: b0195
  article-title: Impact of topographic obstacles on the discharge distribution in open-channel bifurcations
  publication-title: J. Hydrol.
– volume: 126
  start-page: 79
  year: 2019
  end-page: 95
  ident: b0235
  article-title: PRIMo: parallel raster inundation model
  publication-title: Adv. Water Resour.
– volume: 55
  start-page: 85
  year: 2017
  end-page: 100
  ident: b0295
  article-title: Steady-flow experiments in urban areas and anisotropic porosity model
  publication-title: J. Hydraul. Res.
– volume: 33
  start-page: 476
  year: 2007
  end-page: 496
  ident: b0065
  article-title: Mathematical modeling of tidal hydrodynamics in shallow lagoons: a review of open issues and applications to the Venice lagoon
  publication-title: Comput. Geosci.
– volume: 136
  year: 2020
  ident: b0290
  article-title: On integral and differential porosity models for urban flooding simulation
  publication-title: Adv. Water Resour.
– volume: 134
  start-page: 387
  year: 2016
  end-page: 401
  ident: b0010
  article-title: The impacts of climate change on river flood risk at the global scale
  publication-title: Clim. Change
– volume: 63
  start-page: 1151
  year: 2020
  end-page: 1176
  ident: b0185
  article-title: Flood resilience: a systematic review
  publication-title: J. Environ. Plan. Manage.
– start-page: 117
  year: 1989
  end-page: 126
  ident: b0025
  article-title: Simulation of a levee-breaking submersion of planes and urban areas
  publication-title: HYDROCOMP ’89, Proceedings of the International Conference on Computational Modelling and Experimental Methods in Hydraulics
– volume: 59
  start-page: 82
  year: 2013
  end-page: 94
  ident: b0305
  article-title: Mathematical modeling of flooding due to river bank failure
  publication-title: Adv. Water Resour.
– volume: 109
  start-page: 133
  year: 2017
  end-page: 157
  ident: b0115
  article-title: A critical assessment of flux and source term closures in shallow water models with porosity for urban flood simulations
  publication-title: Adv. Water Resour.
– volume: 45
  start-page: 37
  year: 2007
  end-page: 44
  ident: b0260
  article-title: Flash flood flow experiment in a simplified urban district
  publication-title: J. Hydraul. Res.
– volume: 40
  start-page: 7447
  year: 2015
  end-page: 7473
  ident: b0205
  article-title: Shallow water equations with depth-dependent anisotropic porosity for subgrid-scale topography
  publication-title: Appl. Math. Model.
– volume: 37
  start-page: 40
  year: 2012
  end-page: 72
  ident: b0105
  article-title: Multiple porosity shallow water models for macroscopic modelling of urban floods
  publication-title: Adv. Water Resour.
– volume: 584
  year: 2020
  ident: b0220
  article-title: Three-dimensional urban flood inundation simulation based on digital aerial photogrammetry
  publication-title: J. Hydrol.
– volume: 38
  start-page: 221
  year: 2009
  end-page: 234
  ident: b0175
  article-title: Adaptive quadtree simulation of shallow flows with wet–dry fronts over complex topography
  publication-title: Comput. Fluids
– volume: 16
  start-page: 1413
  year: 2016
  end-page: 1429
  ident: b0015
  article-title: Hydrodynamics of long-duration urban floods: experiments and numerical modelling
  publication-title: Nat. Hazards Earth Syst. Sci.
– volume: 470–471
  start-page: 1
  year: 2012
  end-page: 11
  ident: b0040
  article-title: Multi-layered coarse grid modelling in 2D urban flood simulations
  publication-title: J. Hydrol.
– volume: 104
  start-page: 1
  year: 2017
  end-page: 14
  ident: b0315
  article-title: Modeling anisotropy in free-surface overland and shallow inundation flows
  publication-title: Adv. Water Resour.
– volume: 107
  start-page: 43
  year: 2017
  end-page: 55
  ident: b0110
  article-title: Consistency and bicharacteristic analysis of integral porosity shallow water models. Explaining model oversensitivity to mesh design
  publication-title: Adv. Water Resour.
– volume: 122
  start-page: 1
  year: 2018
  end-page: 26
  ident: b0130
  article-title: Flux closures and source term models for shallow water models with depth-dependent integral porosity
  publication-title: Adv. Water Resour.
– volume: 6
  start-page: 36021
  year: 2016
  ident: b0255
  article-title: Global-scale river flood vulnerability in the last 50 years
  publication-title: Sci. Rep.
– volume: 103
  start-page: 16
  year: 2017
  end-page: 31
  ident: b0125
  article-title: Dual integral porosity shallow water model for urban flood modelling
  publication-title: Adv. Water Resour.
– volume: 57
  start-page: 60
  year: 2014
  end-page: 75
  ident: b0275
  article-title: GPU-enhanced Finite Volume Shallow Water solver for fast flood simulations
  publication-title: Environ. Model. Softw.
– start-page: accepted
  year: 2020
  ident: b0190
  article-title: Optimal floodgate operation for river flood management: the case study of Padova (Italy)
  publication-title: J. Hydrol.: Reg. Stud.
– volume: 13
  year: 2018
  ident: b0330
  article-title: Estimates of present and future flood risk in the conterminous United States
  publication-title: Environ. Res. Lett.
– volume: 62
  start-page: 903
  year: 2010
  end-page: 930
  ident: b0035
  article-title: Unstructured finite volume discretization of two-dimensional depth-averaged shallow water equations with porosity
  publication-title: Int. J. Numer. Methods Fluids
– volume: 125
  start-page: 98
  year: 2019
  end-page: 113
  ident: b0090
  article-title: Flood inundation modeling in urbanized areas: a mesh-independent porosity approach with anisotropic friction
  publication-title: Adv. Water Resour.
– volume: 80
  start-page: 103
  year: 2016
  end-page: 125
  ident: b0280
  article-title: Simulation of the January 2014 flood on the Secchia River using a fast and high-resolution 2D parallel shallow-water numerical scheme
  publication-title: Nat. Hazards
– volume: 426–427
  start-page: 1
  year: 2012
  end-page: 16
  ident: b0045
  article-title: A coarse-grid approach to representing building blockage effects in 2D urban flood modelling
  publication-title: J. Hydrol.
– volume: 32
  start-page: 873
  year: 2009
  end-page: 884
  ident: b0180
  article-title: Numerical resolution of well-balanced shallow water equations with complex source terms
  publication-title: Adv. Water Resour.
– volume: 554
  start-page: 693
  year: 2017
  end-page: 709
  ident: b0030
  article-title: Shallow-water models with anisotropic porosity and merging for flood modelling on Cartesian grids
  publication-title: J. Hydrol.
– volume: 107
  start-page: 233
  year: 2017
  end-page: 249
  ident: b0085
  article-title: A 1D–2D Shallow Water Equations solver for discontinuous porosity field based on a Generalized Riemann Problem
  publication-title: Adv. Water Resour.
– volume: 50
  start-page: 309
  year: 2006
  end-page: 345
  ident: b0120
  article-title: Flux and source term discretization in two-dimensional shallow water models with porosity on unstructured grids
  publication-title: Int. J. Numer. Meth. Fluids
– volume: 140
  year: 2020
  ident: b0100
  article-title: A second-order numerical scheme for the porous shallow water equations based on a DOT ADER augmented Riemann solver
  publication-title: Adv. Water Resour.
– volume: 114
  start-page: 83
  year: 2018
  end-page: 101
  ident: b0060
  article-title: The solution of the dam-break problem in the Porous Shallow water equations
  publication-title: Adv. Water Resour.
– volume: 9
  start-page: 1986
  year: 2018
  ident: b0140
  article-title: Effective adaptation to rising flood risk
  publication-title: Nat. Commun.
– year: 2001
  ident: b0270
  article-title: Shock-capturing Methods for Free-surface Shallow Flows
– volume: 22
  year: 2010
  ident: b0080
  article-title: Open channel flow through a linear contraction
  publication-title: Phys. Fluids
– volume: 5
  start-page: 133
  year: 2007
  end-page: 160
  ident: b0160
  article-title: A second-order well-balanced positivity preserving central-upwind scheme for the Saint-Venant system
  publication-title: Commun. Math. Sci.
– volume: 541
  start-page: 1165
  year: 2016
  end-page: 1184
  ident: b0210
  article-title: Urban flood modeling using shallow water equations with depth-dependent anisotropic porosity
  publication-title: J. Hydrol.
– year: 1999
  ident: b0265
  article-title: Riemann Solvers and Numerical Methods for Fluid Dynamics
– volume: 523
  start-page: 680
  year: 2015
  end-page: 692
  ident: b0150
  article-title: Urban flood modeling with porous shallow-water equations: a case study of model errors in the presence of anisotropic porosity
  publication-title: J. Hydrol.
– volume: 129
  start-page: 1
  year: 2019
  end-page: 15
  ident: b0165
  article-title: Modeling subgrid-scale topographic effects on shallow marsh hydrodynamics and salinity transport
  publication-title: Adv. Water Resour.
– year: 2017
  ident: b0225
  article-title: Hydrodynamic modeling of urban flood flows and disaster risk reduction
  publication-title: Oxford Res. Encycl. Nat. Hazard Sci.
– start-page: 17
  year: 2002
  ident: b0005
  article-title: The model city flooding experiment
  publication-title: Proc. 2nd Project Workshop EC Contract EVG1-CT-2001-00037 IMPACT Investigation of Extreme Flood Processes and Uncertainty. Mo i Rana (Norway)
– volume: 36
  start-page: 3251
  year: 2000
  ident: b0070
  article-title: Two-dimensional shallow flow equations for partially dry areas
  publication-title: Water Resour. Res.
– volume: 135
  year: 2020
  ident: b0170
  article-title: On modeling subgrid-scale macro-structures in narrow twisted channels
  publication-title: Adv. Water Resour.
– volume: 78
  start-page: 87
  year: 2018
  end-page: 95
  ident: b0215
  article-title: Flexible adaptation planning for water sensitive cities
  publication-title: Cities
– volume: 580
  year: 2020
  ident: b0055
  article-title: Is local flood hazard assessment in urban areas significantly influenced by the physical complexity of the hydrodynamic inundation model?
  publication-title: J. Hydrol.
– volume: 20
  start-page: 59
  year: 2020
  end-page: 72
  ident: b0095
  article-title: Enhancing the resilience to flooding induced by levee breaches in lowland areas: a methodology based on numerical modelling
  publication-title: Nat. Hazards Earth Syst. Sci.
– volume: 22
  start-page: 823
  year: 2012
  end-page: 835
  ident: b0145
  article-title: Global exposure to river and coastal flooding: long term trends and changes
  publication-title: Glob. Environ. Change
– volume: 115
  start-page: 12321
  year: 2018
  end-page: 12325
  ident: b0155
  article-title: Flood-risk reduction: structural measures and diverse strategies
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– year: 2018
  ident: b0245
  article-title: Investigation of distributed-porosity fields for urban flood modelling using single-porosity models.
  publication-title: E3S Web Conf.
– volume: 538
  start-page: 445
  year: 2015
  end-page: 457
  ident: b0200
  article-title: Flood risk and adaptation strategies under climate change and urban expansion: a probabilistic analysis using global data
  publication-title: Sci. Total Environ.
– volume: 46
  start-page: 45
  year: 2008
  end-page: 64
  ident: b0250
  article-title: Two-dimensional shallow-water model with porosity for urban flood modelling
  publication-title: J. Hydraul. Res.
– volume: 362
  start-page: 19
  year: 2008
  end-page: 38
  ident: b0230
  article-title: Integral formulation of shallow-water equations with anisotropic porosity for urban flood modeling
  publication-title: J. Hydrol.
– volume: 50
  start-page: 5941
  year: 2014
  end-page: 5957
  ident: b0310
  article-title: Integrated mathematical modeling of hydrological and hydrodynamic response to rainfall events in rural lowland catchments
  publication-title: Water Resour. Res.
– volume: 20
  start-page: 1567
  year: 2006
  end-page: 1583
  ident: b0335
  article-title: Urban fluvial flood modelling using a two-dimensional diffusion-wave treatment. Part 2: development of a sub-grid-scale treatment
  publication-title: Hydrol. Process.
– volume: 109
  start-page: 167
  year: 2018
  end-page: 181
  ident: b0050
  article-title: Variance based sensitivity analysis of 1D and 2D hydraulic models: an experimental urban flood case
  publication-title: Environ. Model. Softw.
– volume: 25
  start-page: 36
  year: 2011
  end-page: 53
  ident: b0340
  article-title: Interactions between subgrid-scale resolution, feature representation and grid-scale resolution in flood inundation modelling
  publication-title: Hydrol. Process.
– volume: 15
  start-page: 1011
  year: 2015
  end-page: 1023
  ident: b0135
  article-title: Representing hydrodynamically important blocking features in coastal or riverine lidar topography
  publication-title: Nat. Hazards Earth Syst. Sci.
– volume: 568
  start-page: 247
  year: 2019
  end-page: 259
  ident: b0300
  article-title: Modelling urban floods using a finite element staggered scheme with an anisotropic dual porosity model
  publication-title: J. Hydrol.
– volume: 651
  start-page: 1435
  year: 2019
  end-page: 1450
  ident: b0320
  article-title: Floods, landscape modifications and population dynamics in anthropogenic coastal lowlands: the Polesine (northern Italy) case study
  publication-title: Sci. Total Environ.
– start-page: 729
  year: 2008
  end-page: 736
  ident: b0020
  article-title: 2D numerical modelling for hydraulic hazard assessment: a dam-break case study
  publication-title: River Flow 2008, Proceedings of the International Conference on Fluvial Hydraulics. Kubaba, Cesme, Izmir, Turkey
– volume: 41
  start-page: 49
  year: 2012
  end-page: 64
  ident: b0240
  article-title: Building treatments for urban flood inundation models and implications for predictive skill and modeling efficiency
  publication-title: Adv. Water Resour.
– volume: 107
  start-page: 85
  year: 2018
  end-page: 95
  ident: b0325
  article-title: An integrated framework for high-resolution urban flood modelling considering multiple information sources and urban features
  publication-title: Environ. Model. Softw.
– volume: 88
  start-page: 119
  year: 2017
  end-page: 137
  ident: b0285
  article-title: A non-uniform efficient grid type for GPU-parallel Shallow Water Equations models
  publication-title: Environ. Model. Softw.
– volume: 55
  start-page: 85
  year: 2017
  ident: 10.1016/j.jhydrol.2020.125193_b0295
  article-title: Steady-flow experiments in urban areas and anisotropic porosity model
  publication-title: J. Hydraul. Res.
  doi: 10.1080/00221686.2016.1238013
– volume: 36
  start-page: 3251
  year: 2000
  ident: 10.1016/j.jhydrol.2020.125193_b0070
  article-title: Two-dimensional shallow flow equations for partially dry areas
  publication-title: Water Resour. Res.
  doi: 10.1029/2000WR900167
– volume: 362
  start-page: 19
  year: 2008
  ident: 10.1016/j.jhydrol.2020.125193_b0230
  article-title: Integral formulation of shallow-water equations with anisotropic porosity for urban flood modeling
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2008.08.009
– volume: 80
  start-page: 103
  year: 2016
  ident: 10.1016/j.jhydrol.2020.125193_b0280
  article-title: Simulation of the January 2014 flood on the Secchia River using a fast and high-resolution 2D parallel shallow-water numerical scheme
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-015-1959-4
– volume: 584
  year: 2020
  ident: 10.1016/j.jhydrol.2020.125193_b0220
  article-title: Three-dimensional urban flood inundation simulation based on digital aerial photogrammetry
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.124308
– volume: 126
  start-page: 79
  year: 2019
  ident: 10.1016/j.jhydrol.2020.125193_b0235
  article-title: PRIMo: parallel raster inundation model
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2019.02.007
– volume: 45
  start-page: 37
  year: 2007
  ident: 10.1016/j.jhydrol.2020.125193_b0260
  article-title: Flash flood flow experiment in a simplified urban district
  publication-title: J. Hydraul. Res.
  doi: 10.1080/00221686.2007.9521831
– volume: 6
  start-page: 36021
  year: 2016
  ident: 10.1016/j.jhydrol.2020.125193_b0255
  article-title: Global-scale river flood vulnerability in the last 50 years
  publication-title: Sci. Rep.
  doi: 10.1038/srep36021
– start-page: 17
  year: 2002
  ident: 10.1016/j.jhydrol.2020.125193_b0005
  article-title: The model city flooding experiment
– volume: 538
  start-page: 445
  year: 2015
  ident: 10.1016/j.jhydrol.2020.125193_b0200
  article-title: Flood risk and adaptation strategies under climate change and urban expansion: a probabilistic analysis using global data
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2015.08.068
– volume: 41
  start-page: 49
  year: 2012
  ident: 10.1016/j.jhydrol.2020.125193_b0240
  article-title: Building treatments for urban flood inundation models and implications for predictive skill and modeling efficiency
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2012.02.012
– volume: 16
  start-page: 1413
  year: 2016
  ident: 10.1016/j.jhydrol.2020.125193_b0015
  article-title: Hydrodynamics of long-duration urban floods: experiments and numerical modelling
  publication-title: Nat. Hazards Earth Syst. Sci.
  doi: 10.5194/nhess-16-1413-2016
– volume: 62
  start-page: 903
  year: 2010
  ident: 10.1016/j.jhydrol.2020.125193_b0035
  article-title: Unstructured finite volume discretization of two-dimensional depth-averaged shallow water equations with porosity
  publication-title: Int. J. Numer. Methods Fluids
  doi: 10.1002/fld.2107
– volume: 494
  start-page: 10
  year: 2013
  ident: 10.1016/j.jhydrol.2020.125193_b0195
  article-title: Impact of topographic obstacles on the discharge distribution in open-channel bifurcations
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2013.04.023
– volume: 129
  start-page: 1
  year: 2019
  ident: 10.1016/j.jhydrol.2020.125193_b0165
  article-title: Modeling subgrid-scale topographic effects on shallow marsh hydrodynamics and salinity transport
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2019.05.004
– volume: 32
  start-page: 873
  year: 2009
  ident: 10.1016/j.jhydrol.2020.125193_b0180
  article-title: Numerical resolution of well-balanced shallow water equations with complex source terms
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2009.02.010
– volume: 109
  start-page: 167
  year: 2018
  ident: 10.1016/j.jhydrol.2020.125193_b0050
  article-title: Variance based sensitivity analysis of 1D and 2D hydraulic models: an experimental urban flood case
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2018.08.008
– volume: 554
  start-page: 693
  year: 2017
  ident: 10.1016/j.jhydrol.2020.125193_b0030
  article-title: Shallow-water models with anisotropic porosity and merging for flood modelling on Cartesian grids
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2017.09.051
– volume: 426–427
  start-page: 1
  year: 2012
  ident: 10.1016/j.jhydrol.2020.125193_b0045
  article-title: A coarse-grid approach to representing building blockage effects in 2D urban flood modelling
  publication-title: J. Hydrol.
– volume: 136
  year: 2020
  ident: 10.1016/j.jhydrol.2020.125193_b0290
  article-title: On integral and differential porosity models for urban flooding simulation
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2019.103455
– volume: 59
  start-page: 82
  year: 2013
  ident: 10.1016/j.jhydrol.2020.125193_b0305
  article-title: Mathematical modeling of flooding due to river bank failure
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2013.05.011
– volume: 57
  start-page: 60
  year: 2014
  ident: 10.1016/j.jhydrol.2020.125193_b0275
  article-title: GPU-enhanced Finite Volume Shallow Water solver for fast flood simulations
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2014.02.003
– volume: 134
  start-page: 387
  year: 2016
  ident: 10.1016/j.jhydrol.2020.125193_b0010
  article-title: The impacts of climate change on river flood risk at the global scale
  publication-title: Clim. Change
  doi: 10.1007/s10584-014-1084-5
– volume: 37
  start-page: 40
  year: 2012
  ident: 10.1016/j.jhydrol.2020.125193_b0105
  article-title: Multiple porosity shallow water models for macroscopic modelling of urban floods
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2011.11.002
– start-page: 72
  year: 1994
  ident: 10.1016/j.jhydrol.2020.125193_b0075
  article-title: A new set of equations for very shallow water and partially dry areas suitable to 2D numerical models
– year: 1999
  ident: 10.1016/j.jhydrol.2020.125193_b0265
– volume: 135
  year: 2020
  ident: 10.1016/j.jhydrol.2020.125193_b0170
  article-title: On modeling subgrid-scale macro-structures in narrow twisted channels
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2019.103465
– volume: 46
  start-page: 45
  year: 2008
  ident: 10.1016/j.jhydrol.2020.125193_b0250
  article-title: Two-dimensional shallow-water model with porosity for urban flood modelling
  publication-title: J. Hydraul. Res.
  doi: 10.1080/00221686.2008.9521842
– volume: 109
  start-page: 133
  year: 2017
  ident: 10.1016/j.jhydrol.2020.125193_b0115
  article-title: A critical assessment of flux and source term closures in shallow water models with porosity for urban flood simulations
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2017.09.002
– volume: 122
  start-page: 1
  year: 2018
  ident: 10.1016/j.jhydrol.2020.125193_b0130
  article-title: Flux closures and source term models for shallow water models with depth-dependent integral porosity
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2018.09.014
– volume: 15
  start-page: 1011
  year: 2015
  ident: 10.1016/j.jhydrol.2020.125193_b0135
  article-title: Representing hydrodynamically important blocking features in coastal or riverine lidar topography
  publication-title: Nat. Hazards Earth Syst. Sci.
  doi: 10.5194/nhess-15-1011-2015
– volume: 88
  start-page: 119
  year: 2017
  ident: 10.1016/j.jhydrol.2020.125193_b0285
  article-title: A non-uniform efficient grid type for GPU-parallel Shallow Water Equations models
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2016.11.012
– year: 2001
  ident: 10.1016/j.jhydrol.2020.125193_b0270
– volume: 523
  start-page: 680
  year: 2015
  ident: 10.1016/j.jhydrol.2020.125193_b0150
  article-title: Urban flood modeling with porous shallow-water equations: a case study of model errors in the presence of anisotropic porosity
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2015.01.059
– volume: 13
  year: 2018
  ident: 10.1016/j.jhydrol.2020.125193_b0330
  article-title: Estimates of present and future flood risk in the conterminous United States
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/aaac65
– volume: 115
  start-page: 12321
  year: 2018
  ident: 10.1016/j.jhydrol.2020.125193_b0155
  article-title: Flood-risk reduction: structural measures and diverse strategies
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1818227115
– volume: 33
  start-page: 476
  year: 2007
  ident: 10.1016/j.jhydrol.2020.125193_b0065
  article-title: Mathematical modeling of tidal hydrodynamics in shallow lagoons: a review of open issues and applications to the Venice lagoon
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2006.07.009
– volume: 107
  start-page: 233
  year: 2017
  ident: 10.1016/j.jhydrol.2020.125193_b0085
  article-title: A 1D–2D Shallow Water Equations solver for discontinuous porosity field based on a Generalized Riemann Problem
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2017.06.023
– volume: 114
  start-page: 83
  year: 2018
  ident: 10.1016/j.jhydrol.2020.125193_b0060
  article-title: The solution of the dam-break problem in the Porous Shallow water equations
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2018.01.026
– volume: 107
  start-page: 43
  year: 2017
  ident: 10.1016/j.jhydrol.2020.125193_b0110
  article-title: Consistency and bicharacteristic analysis of integral porosity shallow water models. Explaining model oversensitivity to mesh design
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2017.06.008
– volume: 107
  start-page: 85
  year: 2018
  ident: 10.1016/j.jhydrol.2020.125193_b0325
  article-title: An integrated framework for high-resolution urban flood modelling considering multiple information sources and urban features
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2018.06.010
– volume: 125
  start-page: 98
  year: 2019
  ident: 10.1016/j.jhydrol.2020.125193_b0090
  article-title: Flood inundation modeling in urbanized areas: a mesh-independent porosity approach with anisotropic friction
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2019.01.010
– volume: 9
  start-page: 1986
  year: 2018
  ident: 10.1016/j.jhydrol.2020.125193_b0140
  article-title: Effective adaptation to rising flood risk
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04396-1
– volume: 40
  start-page: 7447
  issue: 17–18
  year: 2015
  ident: 10.1016/j.jhydrol.2020.125193_b0205
  article-title: Shallow water equations with depth-dependent anisotropic porosity for subgrid-scale topography
  publication-title: Appl. Math. Model.
– volume: 78
  start-page: 87
  year: 2018
  ident: 10.1016/j.jhydrol.2020.125193_b0215
  article-title: Flexible adaptation planning for water sensitive cities
  publication-title: Cities
  doi: 10.1016/j.cities.2018.01.022
– start-page: accepted
  year: 2020
  ident: 10.1016/j.jhydrol.2020.125193_b0190
  article-title: Optimal floodgate operation for river flood management: the case study of Padova (Italy)
  publication-title: J. Hydrol.: Reg. Stud.
– volume: 470–471
  start-page: 1
  year: 2012
  ident: 10.1016/j.jhydrol.2020.125193_b0040
  article-title: Multi-layered coarse grid modelling in 2D urban flood simulations
  publication-title: J. Hydrol.
– volume: 38
  start-page: 221
  year: 2009
  ident: 10.1016/j.jhydrol.2020.125193_b0175
  article-title: Adaptive quadtree simulation of shallow flows with wet–dry fronts over complex topography
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2008.02.008
– year: 2018
  ident: 10.1016/j.jhydrol.2020.125193_b0245
  article-title: Investigation of distributed-porosity fields for urban flood modelling using single-porosity models.
– volume: 20
  start-page: 1567
  year: 2006
  ident: 10.1016/j.jhydrol.2020.125193_b0335
  article-title: Urban fluvial flood modelling using a two-dimensional diffusion-wave treatment. Part 2: development of a sub-grid-scale treatment
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.5936
– volume: 63
  start-page: 1151
  year: 2020
  ident: 10.1016/j.jhydrol.2020.125193_b0185
  article-title: Flood resilience: a systematic review
  publication-title: J. Environ. Plan. Manage.
  doi: 10.1080/09640568.2019.1641474
– volume: 104
  start-page: 1
  year: 2017
  ident: 10.1016/j.jhydrol.2020.125193_b0315
  article-title: Modeling anisotropy in free-surface overland and shallow inundation flows
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2017.03.007
– volume: 140
  year: 2020
  ident: 10.1016/j.jhydrol.2020.125193_b0100
  article-title: A second-order numerical scheme for the porous shallow water equations based on a DOT ADER augmented Riemann solver
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2020.103587
– volume: 5
  start-page: 133
  year: 2007
  ident: 10.1016/j.jhydrol.2020.125193_b0160
  article-title: A second-order well-balanced positivity preserving central-upwind scheme for the Saint-Venant system
  publication-title: Commun. Math. Sci.
  doi: 10.4310/CMS.2007.v5.n1.a6
– volume: 25
  start-page: 36
  year: 2011
  ident: 10.1016/j.jhydrol.2020.125193_b0340
  article-title: Interactions between subgrid-scale resolution, feature representation and grid-scale resolution in flood inundation modelling
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.7813
– volume: 568
  start-page: 247
  year: 2019
  ident: 10.1016/j.jhydrol.2020.125193_b0300
  article-title: Modelling urban floods using a finite element staggered scheme with an anisotropic dual porosity model
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.10.055
– volume: 651
  start-page: 1435
  year: 2019
  ident: 10.1016/j.jhydrol.2020.125193_b0320
  article-title: Floods, landscape modifications and population dynamics in anthropogenic coastal lowlands: the Polesine (northern Italy) case study
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.09.121
– volume: 22
  year: 2010
  ident: 10.1016/j.jhydrol.2020.125193_b0080
  article-title: Open channel flow through a linear contraction
  publication-title: Phys. Fluids
  doi: 10.1063/1.3370334
– start-page: 117
  year: 1989
  ident: 10.1016/j.jhydrol.2020.125193_b0025
  article-title: Simulation of a levee-breaking submersion of planes and urban areas
– volume: 50
  start-page: 5941
  year: 2014
  ident: 10.1016/j.jhydrol.2020.125193_b0310
  article-title: Integrated mathematical modeling of hydrological and hydrodynamic response to rainfall events in rural lowland catchments
  publication-title: Water Resour. Res.
  doi: 10.1002/2013WR014293
– volume: 103
  start-page: 16
  year: 2017
  ident: 10.1016/j.jhydrol.2020.125193_b0125
  article-title: Dual integral porosity shallow water model for urban flood modelling
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2017.02.009
– year: 2017
  ident: 10.1016/j.jhydrol.2020.125193_b0225
  article-title: Hydrodynamic modeling of urban flood flows and disaster risk reduction
  publication-title: Oxford Res. Encycl. Nat. Hazard Sci.
  doi: 10.1093/acrefore/9780199389407.013.127
– volume: 541
  start-page: 1165
  year: 2016
  ident: 10.1016/j.jhydrol.2020.125193_b0210
  article-title: Urban flood modeling using shallow water equations with depth-dependent anisotropic porosity
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2016.08.025
– volume: 20
  start-page: 59
  year: 2020
  ident: 10.1016/j.jhydrol.2020.125193_b0095
  article-title: Enhancing the resilience to flooding induced by levee breaches in lowland areas: a methodology based on numerical modelling
  publication-title: Nat. Hazards Earth Syst. Sci.
  doi: 10.5194/nhess-20-59-2020
– volume: 50
  start-page: 309
  year: 2006
  ident: 10.1016/j.jhydrol.2020.125193_b0120
  article-title: Flux and source term discretization in two-dimensional shallow water models with porosity on unstructured grids
  publication-title: Int. J. Numer. Meth. Fluids
  doi: 10.1002/fld.1059
– volume: 580
  year: 2020
  ident: 10.1016/j.jhydrol.2020.125193_b0055
  article-title: Is local flood hazard assessment in urban areas significantly influenced by the physical complexity of the hydrodynamic inundation model?
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.124231
– volume: 22
  start-page: 823
  year: 2012
  ident: 10.1016/j.jhydrol.2020.125193_b0145
  article-title: Global exposure to river and coastal flooding: long term trends and changes
  publication-title: Glob. Environ. Change
  doi: 10.1016/j.gloenvcha.2012.07.004
– start-page: 729
  year: 2008
  ident: 10.1016/j.jhydrol.2020.125193_b0020
  article-title: 2D numerical modelling for hydraulic hazard assessment: a dam-break case study
SSID ssj0000334
Score 2.4829543
Snippet •Flood modelling in real urban areas is a challenge for differential anisotropic porosity models.•Direction-dependent, cell-based conveyance porosity is not...
In the framework of porosity models for large-scale urban floods, this work presents a method to compute the spatial distribution of the porosity parameters of...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 125193
SubjectTerms algorithms
Anisotropic friction
anisotropy
Conveyance porosity
ingredients
isotropy
momentum
porosity
Porosity model
Porous shallow water equations
preferential flow
Spatially-distributed porosity field
Structured grid
Urban flood
Title Floodwater pathways in urban areas: A method to compute porosity fields for anisotropic subgrid models in differential form
URI https://dx.doi.org/10.1016/j.jhydrol.2020.125193
https://www.proquest.com/docview/2524304767
Volume 589
WOSCitedRecordID wos000568830400058&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2707
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000334
  issn: 0022-1694
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLXKhgQviE8xvmQk3qoEFjuxzVuFVj4epj0M1LfIcRxItSVVkm6r-PPcGztttTENkHiJqqi21Z4T-9i59x5C3mQyFzKJWaAs7FW50TKQ2pogy2zyzuZWxkXem02Iw0M5m6mj0Wg15MKcnYiqkhcXavFfoYZ7ADamzv4F3OtO4QZ8BtDhCrDD9Y-An2Io-rnG4odoN3yuV33I67LJ4FHWGIPustGddzRqT-OcHcYgxes-RKMPa2t9gGXZ1l1TL0ozbpfZ96bMnXuOi6P19ipd6fMgr9G6P1Z544o9gaCdnGJxhhyZuD6FmFq0my99yg08p-vV4hus2_VWMvz4KNw-qYBt6RDz5o_PrqTQrNMJ9hPndBxaNwtLoTBRTmxP07GzGroy5bvTh3k4dz8lxJFDlG3OefFSNW18OR3hcBFulkDr3iK7kYgVTIi7k88Hsy-bZZwxPpSaxwab9K-3vx3sOmFzaYnvdcvxfXLPg0AnjigPyMhWD8mdj9aXKn9Efm4IQwfC0LKiPWFoT5j3dEIdXWhXU08XOtCFOrpQwJ9u0YV6ulBHF-xymy749dPH5Ov04PjDp8BbcgSGx3EX5FG-z1gicykKI3TMtMmTIikUs5xrEPeoT0E0q0JZwbgplCo4K2KbMJHLzLInZKeqK_uUUM2MlTAqz7AEo1CKZ1onKoZOM5YUbI_w4f9Mja9Xj7YpJ-kQmDhPPQwpwpA6GPZIuG62cAVbbmogB7BSrzqdmkyBYTc1fT2Am8KsjK_adGXrZZtGccTxhXYinv1798_J3c1j9ILsdM3SviS3zVlXts0rz9df3oK6yQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Floodwater+pathways+in+urban+areas%3A+A+method+to+compute+porosity+fields+for+anisotropic+subgrid+models+in+differential+form&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Ferrari%2C+Alessia&rft.au=Viero%2C+Daniele+P.&rft.date=2020-10-01&rft.pub=Elsevier+B.V&rft.issn=0022-1694&rft.eissn=1879-2707&rft.volume=589&rft_id=info:doi/10.1016%2Fj.jhydrol.2020.125193&rft.externalDocID=S0022169420306533
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon