Evolutionary-Fragmentary Model of the Routing Problem

One of the variants of the routing problem on a plane integer lattice is considered. It is shown that this problem can be represented as a problem of searching for words with certain properties over a finite alphabet. In turn, the problem of finding optimal words can be considered as a problem of fr...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Cybernetics and systems analysis Ročník 51; číslo 3; s. 432 - 437
Hlavní autoři: Kozin, I. V., Kryvtsun, O. V., Pinchuk, V. P.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.05.2015
Springer
Springer Nature B.V
Témata:
ISSN:1060-0396, 1573-8337
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:One of the variants of the routing problem on a plane integer lattice is considered. It is shown that this problem can be represented as a problem of searching for words with certain properties over a finite alphabet. In turn, the problem of finding optimal words can be considered as a problem of fragmentary structure. A combinatorial estimate for the set of feasible words is derived and the lower bound of the density is established for the problem of finding optimal line density. An evolutionary-fragmentary model of the routing problem is constructed. Optimal and near-optimal solutions are obtained for this problem for small dimensions.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:1060-0396
1573-8337
DOI:10.1007/s10559-015-9734-9