Poly(lactic acid) nanofibrous scaffolds for tissue engineering
Poly(lactic acid) (PLA) is a synthetic polyester that has shown extensive utility in tissue engineering. Synthesized either by ring opening polymerization or polycondensation, PLA hydrolytically degrades into lactic acid, a metabolic byproduct, making it suitable for medical applications. Specifical...
Saved in:
| Published in: | Advanced drug delivery reviews Vol. 107; pp. 206 - 212 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Netherlands
Elsevier B.V
15.12.2016
|
| Subjects: | |
| ISSN: | 0169-409X, 1872-8294, 1872-8294 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Poly(lactic acid) (PLA) is a synthetic polyester that has shown extensive utility in tissue engineering. Synthesized either by ring opening polymerization or polycondensation, PLA hydrolytically degrades into lactic acid, a metabolic byproduct, making it suitable for medical applications. Specifically, PLA nanofibers have widened the possible uses of PLA scaffolds for regenerative medicine and drug delivery applications. The use of nanofibrous scaffolds imparts a host of desirable properties, including high surface area, biomimicry of native extracellular matrix architecture, and tuning of mechanical properties, all of which are important facets of designing scaffolds for a particular organ system. Additionally, nanofibrous PLA scaffolds hold great promise as drug delivery carriers, where fabrication parameters and drug-PLA compatibility greatly affect the drug release kinetics. In this review, we present the latest advances in the use of PLA nanofibrous scaffolds for musculoskeletal, nervous, cardiovascular, and cutaneous tissue engineering and offer perspectives on their future use.
[Display omitted] |
|---|---|
| AbstractList | Poly(lactic acid) (PLA) is a synthetic polyester that has shown extensive utility in tissue engineering. Synthesized either by ring opening polymerization or polycondensation, PLA hydrolytically degrades into lactic acid, a metabolic byproduct, making it suitable for medical applications. Specifically, PLA nanofibers have widened the possible uses of PLA scaffolds for regenerative medicine and drug delivery applications. The use of nanofibrous scaffolds imparts a host of desirable properties, including high surface area, biomimicry of native extracellular matrix architecture, and tuning of mechanical properties, all of which are important facets of designing scaffolds for a particular organ system. Additionally, nanofibrous PLA scaffolds hold great promise as drug delivery carriers, where fabrication parameters and drug-PLA compatibility greatly affect the drug release kinetics. In this review, we present the latest advances in the use of PLA nanofibrous scaffolds for musculoskeletal, nervous, cardiovascular, and cutaneous tissue engineering and offer perspectives on their future use.Poly(lactic acid) (PLA) is a synthetic polyester that has shown extensive utility in tissue engineering. Synthesized either by ring opening polymerization or polycondensation, PLA hydrolytically degrades into lactic acid, a metabolic byproduct, making it suitable for medical applications. Specifically, PLA nanofibers have widened the possible uses of PLA scaffolds for regenerative medicine and drug delivery applications. The use of nanofibrous scaffolds imparts a host of desirable properties, including high surface area, biomimicry of native extracellular matrix architecture, and tuning of mechanical properties, all of which are important facets of designing scaffolds for a particular organ system. Additionally, nanofibrous PLA scaffolds hold great promise as drug delivery carriers, where fabrication parameters and drug-PLA compatibility greatly affect the drug release kinetics. In this review, we present the latest advances in the use of PLA nanofibrous scaffolds for musculoskeletal, nervous, cardiovascular, and cutaneous tissue engineering and offer perspectives on their future use. Poly(lactic acid) (PLA) is a synthetic polyester that has shown extensive utility in tissue engineering. Synthesized either by ring opening polymerization or polycondensation, PLA hydrolytically degrades into lactic acid, a metabolic byproduct, making it suitable for medical applications. Specifically, PLA nanofibers have widened the possible uses of PLA scaffolds for regenerative medicine and drug delivery applications. The use of nanofibrous scaffolds imparts a host of desirable properties, including high surface area, biomimicry of native extracellular matrix architecture, and tuning of mechanical properties, all of which are important facets of designing scaffolds for a particular organ system. Additionally, nanofibrous PLA scaffolds hold great promise as drug delivery carriers, where fabrication parameters and drug-PLA compatibility greatly affect the drug release kinetics. In this review, we present the latest advances in the use of PLA nanofibrous scaffolds for musculoskeletal, nervous, cardiovascular, and cutaneous tissue engineering and offer perspectives on their future use. Poly(lactic acid) (PLA) is a synthetic polyester that has shown extensive utility in tissue engineering. Synthesized either by ring opening polymerization or polycondensation, PLA hydrolytically degrades into lactic acid, a metabolic byproduct, making it suitable for medical applications. Specifically, PLA nanofibers have widened the possible uses of PLA scaffolds for regenerative medicine and drug delivery applications. The use of nanofibrous scaffolds imparts a host of desirable properties, including high surface area, biomimicry of native extracellular matrix architecture, and tuning of mechanical properties, all of which are important facets of designing scaffolds for a particular organ system. Additionally, nanofibrous PLA scaffolds hold great promise as drug delivery carriers, where fabrication parameters and drug-PLA compatibility greatly affect the drug release kinetics. In this review, we present the latest advances in the use of PLA nanofibrous scaffolds for musculoskeletal, nervous, cardiovascular, and cutaneous tissue engineering and offer perspectives on their future use. [Display omitted] |
| Author | Santoro, Marco Mikos, Antonios G. Shah, Sarita R. Walker, Jennifer L. |
| AuthorAffiliation | b Department of Bioengineering, Rice University, Houston, TX 77030 a Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005 |
| AuthorAffiliation_xml | – name: b Department of Bioengineering, Rice University, Houston, TX 77030 – name: a Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005 |
| Author_xml | – sequence: 1 givenname: Marco surname: Santoro fullname: Santoro, Marco organization: Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, United States – sequence: 2 givenname: Sarita R. surname: Shah fullname: Shah, Sarita R. organization: Department of Bioengineering, Rice University, Houston, TX 77030, United States – sequence: 3 givenname: Jennifer L. surname: Walker fullname: Walker, Jennifer L. organization: Department of Bioengineering, Rice University, Houston, TX 77030, United States – sequence: 4 givenname: Antonios G. surname: Mikos fullname: Mikos, Antonios G. email: mikos@rice.edu organization: Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, United States |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27125190$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9UcFu1DAQtVAR3RZ-gAPKsRwSxk5iOxKqVFW0IFWCA0jcLMceL7PK2sXOVurfk2VLBRx6mpHmvTfz5p2wo5giMvaaQ8OBy3ebxnqfG7H0DXQN8OEZW3GtRK3F0B2x1TIY6g6G78fspJQNABdKwgt2LBQXPR9gxc6_pOn-bLJuJldZR_5tFW1MgcacdqUqzoaQJl-qkHI1Uyk7rDCuKSJmiuuX7HmwU8FXD_WUfbv68PXyY33z-frT5cVN7bq-n2sp29G2vsOWc5CBK-1GHVw_KKF8iziOSgEPVsheWyU9SBlkp9oWtQDVj-0pOz_o3u7GLXqHcc52MreZtjbfm2TJ_DuJ9MOs053pQS-m-0Xg7EEgp587LLPZUnE4TTbiYtRwLaTUoPiwQN_8vetxyZ-nLQBxALicSskYHiEczD4ZszH7ZMw-GQOdgd-q-j-So9nOlPb30vQ09f2BisuH7wizKY4wOvSU0c3GJ3qK_gseL6mC |
| CitedBy_id | crossref_primary_10_3390_polym12040792 crossref_primary_10_1002_jbm_a_36181 crossref_primary_10_1016_j_colsurfb_2018_08_037 crossref_primary_10_1002_pen_26906 crossref_primary_10_1021_acs_langmuir_4c02975 crossref_primary_10_3390_molecules25225286 crossref_primary_10_3390_membranes12100929 crossref_primary_10_1016_j_polymer_2024_127294 crossref_primary_10_3390_ijms232416185 crossref_primary_10_1002_adfm_202305603 crossref_primary_10_1002_adtp_202300428 crossref_primary_10_1016_j_ijpharm_2017_08_117 crossref_primary_10_1007_s40009_023_01261_8 crossref_primary_10_1016_j_progpolymsci_2018_10_004 crossref_primary_10_1016_j_bioadv_2022_212808 crossref_primary_10_3390_jfb12010016 crossref_primary_10_1080_09205063_2020_1753932 crossref_primary_10_3390_jfb16070249 crossref_primary_10_1016_j_biotechadv_2017_05_006 crossref_primary_10_1007_s40883_020_00187_7 crossref_primary_10_1016_j_mec_2025_e00262 crossref_primary_10_3390_jcs8070269 crossref_primary_10_3390_polym15010065 crossref_primary_10_1016_j_jmbbm_2016_09_012 crossref_primary_10_2174_1381612829666230816100631 crossref_primary_10_1002_pat_5095 crossref_primary_10_1016_j_tibtech_2019_07_002 crossref_primary_10_1039_D2NJ02747J crossref_primary_10_1080_00914037_2024_2335173 crossref_primary_10_1016_j_bioactmat_2021_03_009 crossref_primary_10_1039_D4RA02002B crossref_primary_10_1080_09205063_2023_2168594 crossref_primary_10_3390_pharmaceutics13070957 crossref_primary_10_1016_j_jddst_2023_105116 crossref_primary_10_1002_adhm_202201457 crossref_primary_10_1039_C9BM01290G crossref_primary_10_1007_s11082_022_03970_8 crossref_primary_10_1007_s12668_018_0525_4 crossref_primary_10_1515_rams_2020_0041 crossref_primary_10_3390_jfb14090465 crossref_primary_10_1007_s11082_024_06500_w crossref_primary_10_1016_j_ijbiomac_2024_129975 crossref_primary_10_1088_1748_605X_abaf06 crossref_primary_10_1134_S1811238221020028 crossref_primary_10_1111_jerd_12805 crossref_primary_10_3390_polym13152577 crossref_primary_10_1007_s11090_019_09956_x crossref_primary_10_1016_j_jddst_2022_103918 crossref_primary_10_1038_s41598_017_10531_7 crossref_primary_10_1080_1023666X_2019_1602908 crossref_primary_10_1088_1742_6596_2175_1_012016 crossref_primary_10_3390_coatings14060666 crossref_primary_10_1002_mabi_202400079 crossref_primary_10_1088_1361_6528_acf501 crossref_primary_10_1088_1748_605X_abca11 crossref_primary_10_3390_polym10060680 crossref_primary_10_3389_fbioe_2021_666399 crossref_primary_10_1002_anbr_202000088 crossref_primary_10_2147_SCCAA_S314107 crossref_primary_10_3389_fbioe_2022_1021827 crossref_primary_10_3390_molecules27113640 crossref_primary_10_3390_ijms23147545 crossref_primary_10_3390_s16081238 crossref_primary_10_1016_j_ijbiomac_2025_141470 crossref_primary_10_1016_j_ijbiomac_2023_126314 crossref_primary_10_1016_j_isci_2024_111512 crossref_primary_10_1007_s00289_024_05148_6 crossref_primary_10_3390_polym13121962 crossref_primary_10_1039_D3NR00583F crossref_primary_10_1016_j_ijbiomac_2024_131365 crossref_primary_10_1016_j_ijbiomac_2019_04_145 crossref_primary_10_3390_pharmaceutics13020230 crossref_primary_10_1016_j_carbpol_2024_121927 crossref_primary_10_1177_0885328217723179 crossref_primary_10_1007_s00784_022_04379_z crossref_primary_10_1016_j_actbio_2018_04_026 crossref_primary_10_1016_j_compositesa_2021_106309 crossref_primary_10_1016_j_ijbiomac_2021_08_218 crossref_primary_10_1016_j_saa_2018_08_019 crossref_primary_10_1016_j_jddst_2018_05_005 crossref_primary_10_1177_09673911211027126 crossref_primary_10_1002_jbm_b_34093 crossref_primary_10_1002_mba2_74 crossref_primary_10_1007_s12034_021_02463_w crossref_primary_10_1016_j_apmt_2020_100611 crossref_primary_10_1016_j_stlm_2021_100011 crossref_primary_10_1208_s12249_024_02855_1 crossref_primary_10_1088_1757_899X_988_1_012003 crossref_primary_10_1016_j_ijbiomac_2023_123693 crossref_primary_10_3390_fermentation9090789 crossref_primary_10_1016_j_eurpolymj_2019_109239 crossref_primary_10_3390_ma18132954 crossref_primary_10_1016_j_ijbiomac_2023_126206 crossref_primary_10_1016_j_ijpharm_2021_120465 crossref_primary_10_1016_j_chemosphere_2024_141186 crossref_primary_10_1002_pat_5215 crossref_primary_10_3390_ijms23031290 crossref_primary_10_1016_j_desal_2023_116475 crossref_primary_10_3390_molecules27207045 crossref_primary_10_1080_21691401_2019_1639723 crossref_primary_10_3389_fphar_2020_00431 crossref_primary_10_1002_mabi_202500308 crossref_primary_10_1007_s13346_021_00925_6 crossref_primary_10_1002_jbm_b_34503 crossref_primary_10_1016_j_ijpharm_2021_120698 crossref_primary_10_1016_j_actbio_2019_04_032 crossref_primary_10_1080_00914037_2023_2301647 crossref_primary_10_1016_j_bioactmat_2020_06_018 crossref_primary_10_1177_0885328217719854 crossref_primary_10_1088_1748_605X_ac11ca crossref_primary_10_1155_2019_2472964 crossref_primary_10_4155_tde_2019_0044 crossref_primary_10_1002_admi_202101302 crossref_primary_10_1007_s10853_022_06887_5 crossref_primary_10_1007_s10934_018_0687_z crossref_primary_10_1016_j_foodchem_2021_131525 crossref_primary_10_1080_09593330_2023_2173088 crossref_primary_10_3389_fbioe_2023_1115312 crossref_primary_10_3390_pharmaceutics15020557 crossref_primary_10_3233_BME_230002 crossref_primary_10_1016_j_ijbiomac_2022_07_140 crossref_primary_10_1186_s13036_024_00412_9 crossref_primary_10_1016_j_jddst_2021_103014 crossref_primary_10_1016_j_mechmat_2023_104640 crossref_primary_10_1016_j_actbio_2019_01_043 crossref_primary_10_1097_SAP_0000000000002036 crossref_primary_10_3390_biomedicines12071613 crossref_primary_10_3390_polym16182621 crossref_primary_10_1134_S1811238221020107 crossref_primary_10_3390_ijms22168781 crossref_primary_10_1016_j_ijbiomac_2024_131335 crossref_primary_10_1016_j_biomaterials_2023_122270 crossref_primary_10_1080_20550324_2022_2054212 crossref_primary_10_1002_ejic_202500126 crossref_primary_10_1007_s10904_023_02605_z crossref_primary_10_1007_s11172_025_4712_5 crossref_primary_10_1016_j_addr_2018_07_019 crossref_primary_10_1016_j_supflu_2018_02_015 crossref_primary_10_1002_adhm_202101590 crossref_primary_10_1016_j_ijbiomac_2021_07_196 crossref_primary_10_1007_s11814_019_0459_8 crossref_primary_10_1016_j_jmbbm_2020_103634 crossref_primary_10_1016_j_mencom_2018_07_024 crossref_primary_10_1515_polyeng_2025_0078 crossref_primary_10_3390_polym17091212 crossref_primary_10_1016_j_bioactmat_2023_01_003 crossref_primary_10_3390_polym13183087 crossref_primary_10_3390_ijms22031408 crossref_primary_10_1016_j_bone_2021_116256 crossref_primary_10_1016_j_mtcomm_2020_101812 crossref_primary_10_3390_biomedicines10050963 crossref_primary_10_3390_polym10050561 crossref_primary_10_1002_slct_202302689 crossref_primary_10_3390_ijms23031736 crossref_primary_10_3390_pharmaceutics13030357 crossref_primary_10_1080_03091902_2022_2041750 crossref_primary_10_3390_polym10101167 crossref_primary_10_1002_jnr_70060 crossref_primary_10_1002_adhm_202304114 crossref_primary_10_3389_fmats_2025_1570738 crossref_primary_10_1007_s12668_025_02022_1 crossref_primary_10_1016_j_carbpol_2020_117198 crossref_primary_10_1016_j_biomaterials_2018_08_010 crossref_primary_10_1002_pol_20200719 crossref_primary_10_1016_j_neulet_2023_137417 crossref_primary_10_1016_j_eurpolymj_2017_09_020 crossref_primary_10_1002_pat_5263 crossref_primary_10_3390_polym15051202 crossref_primary_10_3390_molecules28020485 crossref_primary_10_1038_s41598_021_82484_x crossref_primary_10_1002_jbm_a_36213 crossref_primary_10_1038_s41536_022_00236_5 crossref_primary_10_1016_j_jmbbm_2020_103616 crossref_primary_10_1007_s00170_025_15596_7 crossref_primary_10_3390_ijms23031895 crossref_primary_10_1016_j_ijbiomac_2025_143393 crossref_primary_10_1016_j_prosdent_2018_03_033 crossref_primary_10_1007_s41779_019_00363_1 crossref_primary_10_3390_app13169432 crossref_primary_10_1016_j_jconrel_2020_10_027 crossref_primary_10_3390_ma15207061 crossref_primary_10_1002_smll_202405642 crossref_primary_10_1016_j_bprint_2021_e00177 crossref_primary_10_1016_j_carbpol_2021_117632 crossref_primary_10_1186_s40580_019_0209_y crossref_primary_10_1002_pat_5366 crossref_primary_10_1080_10601325_2021_1880935 crossref_primary_10_1089_ten_tec_2019_0226 crossref_primary_10_34172_bi_30806 crossref_primary_10_1016_j_matt_2022_09_012 crossref_primary_10_1016_j_matdes_2025_114698 crossref_primary_10_1016_j_molstruc_2024_138243 crossref_primary_10_1016_j_rechem_2025_102351 crossref_primary_10_3390_pharmaceutics15092196 crossref_primary_10_1016_j_addr_2018_03_005 crossref_primary_10_3390_nano13060989 crossref_primary_10_3390_gels11050316 crossref_primary_10_1080_07853890_2024_2337871 crossref_primary_10_1016_j_regen_2020_100035 crossref_primary_10_1002_pen_25511 crossref_primary_10_1007_s12257_021_0418_1 crossref_primary_10_1208_s12249_021_02081_z crossref_primary_10_1177_0885328217753414 crossref_primary_10_1007_s40005_024_00690_x crossref_primary_10_1002_pat_5399 crossref_primary_10_1016_j_recot_2024_01_016 crossref_primary_10_1177_08927057251318717 crossref_primary_10_1016_j_jcis_2021_02_099 crossref_primary_10_1002_macp_202000034 crossref_primary_10_1002_jbm_a_37764 crossref_primary_10_1016_j_jiec_2019_06_044 crossref_primary_10_1515_chem_2020_0163 crossref_primary_10_1016_j_ijengsci_2024_104136 crossref_primary_10_1016_j_mattod_2025_03_009 crossref_primary_10_1016_j_colsurfb_2019_01_060 crossref_primary_10_3390_md23090349 crossref_primary_10_3390_ma13173786 crossref_primary_10_1016_j_ijbiomac_2022_09_027 crossref_primary_10_1515_rams_2025_0098 crossref_primary_10_1002_app_56389 crossref_primary_10_1016_j_burns_2024_04_008 crossref_primary_10_1002_jbm_b_34125 crossref_primary_10_1080_1023666X_2018_1499275 crossref_primary_10_1002_adfm_202406950 crossref_primary_10_1016_j_ccr_2019_06_002 crossref_primary_10_1016_j_jddst_2023_105054 crossref_primary_10_1016_j_tice_2025_103024 crossref_primary_10_1016_j_jmst_2020_02_060 crossref_primary_10_1016_j_cej_2019_02_043 crossref_primary_10_1080_00222348_2019_1593601 crossref_primary_10_1007_s10068_024_01543_x crossref_primary_10_1080_03639045_2018_1430820 crossref_primary_10_3390_app12063192 crossref_primary_10_1002_bmm2_12111 crossref_primary_10_1007_s10561_020_09894_5 crossref_primary_10_1016_j_cis_2024_103121 crossref_primary_10_1038_s41598_020_63892_x crossref_primary_10_1116_6_0002206 crossref_primary_10_3390_polym16213044 crossref_primary_10_1002_pen_25339 crossref_primary_10_3390_ijms241713642 crossref_primary_10_3390_ijms21196989 crossref_primary_10_1016_j_biombioe_2024_107067 crossref_primary_10_1016_j_polymer_2020_123336 crossref_primary_10_1038_s41427_023_00526_4 crossref_primary_10_1016_j_biomaterials_2017_09_002 crossref_primary_10_1108_RPJ_05_2025_0180 crossref_primary_10_1038_s41598_022_24275_6 crossref_primary_10_1080_1023666X_2018_1478618 crossref_primary_10_1134_S1990793119070078 crossref_primary_10_1177_0263617418816200 crossref_primary_10_3390_jfb11040078 crossref_primary_10_1007_s00723_019_01133_9 crossref_primary_10_1016_j_bprint_2025_e00429 crossref_primary_10_1016_j_eurpolymj_2025_114161 crossref_primary_10_1002_jbm_a_36776 crossref_primary_10_1134_S1063774523600308 crossref_primary_10_1016_j_mencom_2018_01_020 crossref_primary_10_1016_j_polymer_2020_122596 crossref_primary_10_3390_ijms222011215 crossref_primary_10_1002_marc_202200250 crossref_primary_10_1093_rb_rbae139 crossref_primary_10_1016_j_mtcomm_2017_08_006 crossref_primary_10_3390_biomimetics6040062 crossref_primary_10_1016_j_ijbiomac_2020_08_059 crossref_primary_10_1002_pat_5723 crossref_primary_10_3390_ph16020325 crossref_primary_10_1007_s12221_018_8037_y crossref_primary_10_1016_j_ijbiomac_2025_146977 crossref_primary_10_1002_app_54788 crossref_primary_10_1039_C8NR08704K crossref_primary_10_1002_app_55636 crossref_primary_10_1002_jbm_a_36427 crossref_primary_10_1016_j_surfin_2024_105590 crossref_primary_10_3390_ijms19113475 crossref_primary_10_1016_j_matpr_2020_05_535 crossref_primary_10_3390_ijms251910766 crossref_primary_10_1016_j_ijpharm_2021_120288 crossref_primary_10_3390_ma15062105 crossref_primary_10_3390_polym17141928 crossref_primary_10_1177_0883911521996402 crossref_primary_10_1080_09205063_2016_1211000 crossref_primary_10_1007_s40883_018_0076_9 crossref_primary_10_1016_j_eurpolymj_2017_11_020 crossref_primary_10_1016_j_jallcom_2024_176019 crossref_primary_10_1186_s13068_024_02596_0 crossref_primary_10_3390_gels10040216 crossref_primary_10_1016_j_jcat_2019_03_002 crossref_primary_10_1088_1742_6596_953_1_012015 crossref_primary_10_1002_mabi_202100098 crossref_primary_10_1016_j_actbio_2024_11_006 crossref_primary_10_1080_02635143_2024_2423077 crossref_primary_10_1007_s10973_019_08890_6 crossref_primary_10_3390_pharmaceutics13071038 crossref_primary_10_1016_j_jtice_2017_06_022 crossref_primary_10_3390_biomedicines10112736 crossref_primary_10_1177_0885328217741903 crossref_primary_10_1016_j_recot_2023_02_001 crossref_primary_10_3390_pharmaceutics17091176 crossref_primary_10_1007_s42242_023_00239_1 crossref_primary_10_1016_j_ijbiomac_2023_127607 crossref_primary_10_1080_00914037_2017_1393681 crossref_primary_10_1016_j_procir_2020_02_315 crossref_primary_10_1515_epoly_2020_0046 crossref_primary_10_1007_s11837_018_3222_4 crossref_primary_10_1007_s11665_021_05792_3 crossref_primary_10_1016_j_carbpol_2018_09_011 crossref_primary_10_1016_j_bioadv_2023_213578 crossref_primary_10_1016_j_jddst_2024_105959 crossref_primary_10_3390_technologies11050137 crossref_primary_10_1007_s42765_024_00450_4 crossref_primary_10_1080_15583724_2018_1484761 crossref_primary_10_3390_nano13152236 crossref_primary_10_1089_wound_2020_1206 crossref_primary_10_3390_polym14081627 crossref_primary_10_3390_polym12010159 crossref_primary_10_3390_polym17182455 crossref_primary_10_1016_j_ijbiomac_2021_05_197 |
| Cites_doi | 10.1016/0142-9612(96)85754-1 10.1016/j.msec.2013.11.008 10.1016/j.jconrel.2005.02.024 10.1152/ajpheart.00007.2012 10.1016/j.biotechadv.2011.06.019 10.1186/1754-1611-8-30 10.1007/s10856-008-3646-4 10.1016/j.jconrel.2008.01.011 10.1002/adem.201180006 10.1021/bm900416b 10.1166/jbn.2005.032 10.1016/j.addr.2011.01.008 10.1016/j.addr.2009.07.007 10.1016/j.biomaterials.2013.09.097 10.1002/app.40797 10.1002/app.35372 10.1155/2013/789289 10.1089/ten.2006.12.1197 10.1016/j.addr.2012.03.009 10.1080/15583724.2014.881374 10.1016/j.biomaterials.2013.02.016 10.1016/j.reactfunctpolym.2012.07.011 10.1016/j.actbio.2013.08.022 10.1016/j.carbpol.2011.07.014 10.1128/AAC.00622-13 10.1517/17425247.2013.808183 10.1016/j.ijbiomac.2014.06.004 10.1111/j.1541-4337.2010.00126.x 10.1016/j.actbio.2012.07.012 10.1002/adv.20032 10.1089/ten.tea.2008.0175 10.1016/j.ijbiomac.2014.09.058 10.3390/ijms12042158 10.1089/ten.tec.2013.0458 10.1016/j.biomaterials.2013.08.028 10.1016/j.progpolymsci.2013.05.014 10.1016/j.ijpharm.2012.09.019 10.1016/j.pneurobio.2010.11.002 10.1016/j.biotechadv.2012.08.001 10.1002/bit.20393 10.1002/mabi.201200004 10.1016/j.actbio.2009.12.051 10.1615/CritRevBiomedEng.v40.i5.10 10.1016/j.biomaterials.2011.09.009 10.1016/j.ijpharm.2011.02.004 10.1016/j.addr.2007.03.011 10.1016/j.msec.2013.05.034 10.1021/nl101355x 10.1016/j.jconrel.2015.09.008 10.1016/j.jconrel.2009.06.007 10.1371/journal.pone.0120328 10.1126/science.8493529 10.1097/SCS.0b013e31819b96fb 10.1007/s10853-013-7527-y 10.1016/j.biomaterials.2012.03.063 10.1088/1741-2560/6/1/016001 10.1016/j.biomaterials.2010.07.028 10.1016/j.msec.2012.04.031 10.1039/C5RA05773F 10.1016/j.pneurobio.2015.06.001 10.1016/j.progpolymsci.2010.01.006 10.1016/j.ijpharm.2008.07.033 10.1089/ten.teb.2011.0238 10.1016/j.jconrel.2015.05.103 10.1016/S1369-7021(04)00233-0 10.1089/ten.tec.2008.0422 10.1016/j.proeng.2012.07.534 10.1002/jbm.a.31870 10.1080/00222340600769832 10.1016/j.actbio.2013.07.040 10.1021/bm060680j |
| ContentType | Journal Article |
| Copyright | 2016 Elsevier B.V. Copyright © 2016 Elsevier B.V. All rights reserved. |
| Copyright_xml | – notice: 2016 Elsevier B.V. – notice: Copyright © 2016 Elsevier B.V. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
| DOI | 10.1016/j.addr.2016.04.019 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology Pharmacy, Therapeutics, & Pharmacology |
| EISSN | 1872-8294 |
| EndPage | 212 |
| ExternalDocumentID | PMC5081275 27125190 10_1016_j_addr_2016_04_019 S0169409X16301296 |
| Genre | Journal Article Review |
| GrantInformation_xml | – fundername: NIAMS NIH HHS grantid: F30 AR067606 – fundername: NCI NIH HHS grantid: R01 CA180279 |
| GroupedDBID | --- --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATCM AAXUO ABFNM ABGSF ABJNI ABMAC ABUDA ABYKQ ABZDS ACDAQ ACGFS ACIUM ACRLP ADBBV ADEZE ADUVX AEBSH AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV ALCLG ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC C45 CS3 DOVZS EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M34 M41 MO0 N9A O-L O9- OAUVE OGGZJ OVD OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SCC SDF SDG SDP SES SPCBC SSP SSU SSZ T5K TEORI ~G- --K 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AGRDE AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HMT HVGLF HX~ HZ~ R2- SEW SPT WUQ Y6R ~HD AGCQF AGRNS CGR CUY CVF ECM EIF NPM SSH 7X8 5PM |
| ID | FETCH-LOGICAL-c455t-663ba3d4e31106f178cb8fc59727d3eebb7701fa2658a76d066f64733e82075b3 |
| ISICitedReferencesCount | 372 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000390505500013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0169-409X 1872-8294 |
| IngestDate | Tue Sep 30 16:59:59 EDT 2025 Sun Nov 09 14:12:34 EST 2025 Mon Jul 21 06:05:46 EDT 2025 Sat Nov 29 07:27:12 EST 2025 Tue Nov 18 21:51:13 EST 2025 Fri Feb 23 02:29:04 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | PLA Tissue engineering ACL PDLLA Drug delivery BMP-2 PDLA β-TCP PLLA PLDLA HA PEO Nanofibers Scaffolds TIPS |
| Language | English |
| License | Copyright © 2016 Elsevier B.V. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c455t-663ba3d4e31106f178cb8fc59727d3eebb7701fa2658a76d066f64733e82075b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| OpenAccessLink | https://www.sciencedirect.com/science/article/am/pii/S0169409X16301296?via%3Dihub |
| PMID | 27125190 |
| PQID | 1826680719 |
| PQPubID | 23479 |
| PageCount | 7 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5081275 proquest_miscellaneous_1826680719 pubmed_primary_27125190 crossref_primary_10_1016_j_addr_2016_04_019 crossref_citationtrail_10_1016_j_addr_2016_04_019 elsevier_sciencedirect_doi_10_1016_j_addr_2016_04_019 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-12-15 |
| PublicationDateYYYYMMDD | 2016-12-15 |
| PublicationDate_xml | – month: 12 year: 2016 text: 2016-12-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | Advanced drug delivery reviews |
| PublicationTitleAlternate | Adv Drug Deliv Rev |
| PublicationYear | 2016 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Lee, Jin, Jang (bb0080) 2014; 8 Pillay, Dott, Choonara, Tyagi, Tomar, Kumar, du Toit, Ndesendo (bb0140) 2013 Wei, Guo-Wang, Han, Ding, Chen (bb0170) 2015; 213 Dahlin, Kasper, Mikos (bb0270) 2011; 17 Mohiti-Asli, Pourdeyhimi, Loboa (bb0380) 2014; 20 Saraf, Lozier, Haesslein, Kasper, Raphael, Baggett, Mikos (bb0105) 2009; 15 Hu, Sun, Ma, Xie, Chen, Ma (bb0320) 2010; 31 Bigg (bb0045) 2005; 24 Lou, Wang, Song, Gu, Yang (bb0205) 2014; 69 Lanza, Langer, Vacanti (bb0005) 2007 Zhang, Mochalin, Neitzel, Hazeli, Niu, Kontsos, Zhou, Lelkes, Gogotsi (bb0200) 2012; 33 Zamani, Prabhakaran, Ramakrishna (bb0090) 2013; 8 Maretschek, Greiner, Kissel (bb0125) 2008; 127 Heunis, Smith, Dicks (bb0375) 2013; 57 Holzwarth, Ma (bb0190) 2011; 32 Zhao, Han, Tu, Huan, Zeng, Wu, Cha, Zhou (bb0065) 2012; 32 Butcher, Mahler, Hockaday (bb0295) 2011; 63 Langer, Vacanti (bb0035) 1993; 260 Chiono, Tonda-Turo (bb0245) 2015; 131 Habraken, Wolke, Jansen (bb0180) 2007; 59 Raquez, Habibi, Murariu, Dubois (bb0230) 2013; 38 Mohiti-Asli, Saha, Murphy, Gracz, Pourdeyhimi, Atala, Loboa (bb0350) 2015 Binan, Tendey, De Crescenzo, El Ayoubi, Ajji, Jolicoeur (bb0280) 2014; 35 Badrossamay, McIlwee, Goss, Parker (bb0310) 2010; 10 Ratner (bb0050) 2013 Wang, Mullins, Cregg, Hurtado, Oudega, Trombley, Gilbert (bb0285) 2009; 6 Cheng, Sun, Hu, Jin, Sun, Shi, Zhang, Cui, Zhang (bb0390) 2013; 9 Thuy, Ghosh, Hwang, Chanunpanich, Park (bb0145) 2012; 439 Wang, Zhang, Wang, Yin, Dong (bb0315) 2009; 10 Zeng, Yang, Liang, Zhang, Guan, Xu, Chen, Jing (bb0095) 2005; 105 Lu, Mikos (bb0010) 2009 Jamshidian, Tehrany, Imran, Jacquot, Desobry (bb0015) 2010; 9 Ren (bb0235) 2010 Nguyen, Ghosh, Hwang, Tran, Park (bb0345) 2013; 48 Torres-Giner, Martinez-Abad, Gimeno-Alcaniz, Ocio, Lagaron (bb0155) 2012; 14 Athanasiou, Niederauer, Agrawal (bb0175) 1996; 17 Hasan, Memic, Annabi, Hossain, Paul, Dokmeci, Dehghani, Khademhosseini (bb0300) 2014; 10 Shalumon, Deepthi, Anupama, Nair, Jayakumar, Chennazhi (bb0325) 2015; 72 Li, Mauck, Tuan (bb0265) 2005; 1 Papenburg, Bolhuis-Versteeg, Grijpma, Feijen, Wessling, Stamatialis (bb0215) 2010; 6 Lasprilla, Martinez, Lunelli, Jardini, Filho (bb0025) 2012; 30 Lovald, Khraishi, Wagner, Baack (bb0030) 2009; 20 Gu, Ding, Yang, Liu (bb0240) 2011; 93 Immich, Arias, Carreras, Boemo, Tornero (bb0135) 2013; 33 Fang, Feng (bb0210) 2014; 35 Surrao, Waldman, Amsden (bb0220) 2012; 8 Tian, Prabhakaran, Hu, Chen, Besenbacher, Ramakrishna (bb0120) 2015; 5 Kontogiannopoulos, Assimopoulou, Tsivintzelis, Panayiotou, Papageorgiou (bb0340) 2011; 409 Kobsa, Kristofik, Sawyer, Bothwell, Kyriakides, Saltzman (bb0385) 2013; 34 He, Huang, Han, Liu, Zhang, Chen (bb0150) 2006; 45 Sundaramurthi, Krishnan, Sethuraman (bb0335) 2014; 54 Zahedi, Karami, Rezaeian, Jafari, Mahdaviani, Abdolghaffari, Abdollahi (bb0365) 2012; 124 Gao, Truong, Zhu, Kyratzis (bb0355) 2014; 131 Callahan, Xie, Barker, Zheng, Reneker, Dove, Becker (bb0275) 2013; 34 Mourino, Cattalini, Roether, Dubey, Roy, Boccaccini (bb0225) 2013; 10 Nguyen, Chung, Park (bb0110) 2011; 86 Sun, Jin, Holzwarth, Liu, Hu, Gupte, Zhao, Ma (bb0255) 2012; 12 Lopes, Jardini, Filho (bb0020) 2012; 42 Pérez, Won, Knowles, Kim (bb0195) 2013; 65 Heunis, Bshena, Klumperman, Dicks (bb0370) 2011; 12 Yoo, Kim, Park (bb0075) 2009; 61 Liao, Chen, Liu, Leong (bb0100) 2009; 139 Puppi, Chiellini, Piras, Chiellini (bb0165) 2010; 35 Ma (bb0040) 2004; 7 Bengali, Pannier, Segura, Anderson, Jang, Mustoe, Shea (bb0160) 2005; 90 Amini, Laurencin, Nukavarapu (bb0185) 2012; 40 Shao, Chen, Wang, Chen, Du (bb0070) 2012; 72 Pham, Sharma, Mikos (bb0060) 2006; 7 Kurobe, Maxfield, Tara, Rocco, Bagi, Yi, Udelsman, Zhuang, Cleary, Iwakiri, Breuer, Shinoka (bb0330) 2015; 10 Thakur, Florek, Kohn, Michniak (bb0360) 2008; 364 Pham, Sharma, Mikos (bb0055) 2006; 12 Chou, Carson, Woodrow (bb0085) 2015; 220 Zhao, Tan, Pastorin, Ho (bb0260) 2013; 31 Hsu, Ni (bb0290) 2009; 15 Sakai, Yamada, Yamaguchi, Ciach, Kawakami (bb0130) 2009; 88a Lu, Huang, Lin, Yao, Lou, Tsai, Chen (bb0250) 2009; 20 Eschenhagen, Eder, Vollert, Hansen (bb0305) 2012; 303 Nguyen, Ghosh, Hwang, Chanunpanich, Park (bb0115) 2012; 439 Badrossamay (10.1016/j.addr.2016.04.019_bb0310) 2010; 10 Dahlin (10.1016/j.addr.2016.04.019_bb0270) 2011; 17 Amini (10.1016/j.addr.2016.04.019_bb0185) 2012; 40 Mohiti-Asli (10.1016/j.addr.2016.04.019_bb0380) 2014; 20 Sakai (10.1016/j.addr.2016.04.019_bb0130) 2009; 88a Zeng (10.1016/j.addr.2016.04.019_bb0095) 2005; 105 Thakur (10.1016/j.addr.2016.04.019_bb0360) 2008; 364 Papenburg (10.1016/j.addr.2016.04.019_bb0215) 2010; 6 Gao (10.1016/j.addr.2016.04.019_bb0355) 2014; 131 Zahedi (10.1016/j.addr.2016.04.019_bb0365) 2012; 124 Lee (10.1016/j.addr.2016.04.019_bb0080) 2014; 8 Pérez (10.1016/j.addr.2016.04.019_bb0195) 2013; 65 Kobsa (10.1016/j.addr.2016.04.019_bb0385) 2013; 34 Zamani (10.1016/j.addr.2016.04.019_bb0090) 2013; 8 Chiono (10.1016/j.addr.2016.04.019_bb0245) 2015; 131 Hu (10.1016/j.addr.2016.04.019_bb0320) 2010; 31 Bengali (10.1016/j.addr.2016.04.019_bb0160) 2005; 90 Yoo (10.1016/j.addr.2016.04.019_bb0075) 2009; 61 Raquez (10.1016/j.addr.2016.04.019_bb0230) 2013; 38 Ratner (10.1016/j.addr.2016.04.019_bb0050) 2013 Callahan (10.1016/j.addr.2016.04.019_bb0275) 2013; 34 Zhao (10.1016/j.addr.2016.04.019_bb0065) 2012; 32 Nguyen (10.1016/j.addr.2016.04.019_bb0115) 2012; 439 Pham (10.1016/j.addr.2016.04.019_bb0060) 2006; 7 Pham (10.1016/j.addr.2016.04.019_bb0055) 2006; 12 Puppi (10.1016/j.addr.2016.04.019_bb0165) 2010; 35 Surrao (10.1016/j.addr.2016.04.019_bb0220) 2012; 8 Kontogiannopoulos (10.1016/j.addr.2016.04.019_bb0340) 2011; 409 Tian (10.1016/j.addr.2016.04.019_bb0120) 2015; 5 Wei (10.1016/j.addr.2016.04.019_bb0170) 2015; 213 He (10.1016/j.addr.2016.04.019_bb0150) 2006; 45 Bigg (10.1016/j.addr.2016.04.019_bb0045) 2005; 24 Holzwarth (10.1016/j.addr.2016.04.019_bb0190) 2011; 32 Heunis (10.1016/j.addr.2016.04.019_bb0370) 2011; 12 Lasprilla (10.1016/j.addr.2016.04.019_bb0025) 2012; 30 Ma (10.1016/j.addr.2016.04.019_bb0040) 2004; 7 Fang (10.1016/j.addr.2016.04.019_bb0210) 2014; 35 Zhao (10.1016/j.addr.2016.04.019_bb0260) 2013; 31 Shalumon (10.1016/j.addr.2016.04.019_bb0325) 2015; 72 Kurobe (10.1016/j.addr.2016.04.019_bb0330) 2015; 10 Saraf (10.1016/j.addr.2016.04.019_bb0105) 2009; 15 Thuy (10.1016/j.addr.2016.04.019_bb0145) 2012; 439 Shao (10.1016/j.addr.2016.04.019_bb0070) 2012; 72 Torres-Giner (10.1016/j.addr.2016.04.019_bb0155) 2012; 14 Hsu (10.1016/j.addr.2016.04.019_bb0290) 2009; 15 Jamshidian (10.1016/j.addr.2016.04.019_bb0015) 2010; 9 Lopes (10.1016/j.addr.2016.04.019_bb0020) 2012; 42 Butcher (10.1016/j.addr.2016.04.019_bb0295) 2011; 63 Mohiti-Asli (10.1016/j.addr.2016.04.019_bb0350) 2015 Lanza (10.1016/j.addr.2016.04.019_bb0005) 2007 Habraken (10.1016/j.addr.2016.04.019_bb0180) 2007; 59 Athanasiou (10.1016/j.addr.2016.04.019_bb0175) 1996; 17 Lu (10.1016/j.addr.2016.04.019_bb0010) 2009 Cheng (10.1016/j.addr.2016.04.019_bb0390) 2013; 9 Eschenhagen (10.1016/j.addr.2016.04.019_bb0305) 2012; 303 Immich (10.1016/j.addr.2016.04.019_bb0135) 2013; 33 Heunis (10.1016/j.addr.2016.04.019_bb0375) 2013; 57 Chou (10.1016/j.addr.2016.04.019_bb0085) 2015; 220 Binan (10.1016/j.addr.2016.04.019_bb0280) 2014; 35 Wang (10.1016/j.addr.2016.04.019_bb0285) 2009; 6 Li (10.1016/j.addr.2016.04.019_bb0265) 2005; 1 Nguyen (10.1016/j.addr.2016.04.019_bb0110) 2011; 86 Nguyen (10.1016/j.addr.2016.04.019_bb0345) 2013; 48 Liao (10.1016/j.addr.2016.04.019_bb0100) 2009; 139 Ren (10.1016/j.addr.2016.04.019_bb0235) 2010 Lovald (10.1016/j.addr.2016.04.019_bb0030) 2009; 20 Wang (10.1016/j.addr.2016.04.019_bb0315) 2009; 10 Hasan (10.1016/j.addr.2016.04.019_bb0300) 2014; 10 Pillay (10.1016/j.addr.2016.04.019_bb0140) 2013 Lu (10.1016/j.addr.2016.04.019_bb0250) 2009; 20 Sun (10.1016/j.addr.2016.04.019_bb0255) 2012; 12 Langer (10.1016/j.addr.2016.04.019_bb0035) 1993; 260 Lou (10.1016/j.addr.2016.04.019_bb0205) 2014; 69 Sundaramurthi (10.1016/j.addr.2016.04.019_bb0335) 2014; 54 Gu (10.1016/j.addr.2016.04.019_bb0240) 2011; 93 Zhang (10.1016/j.addr.2016.04.019_bb0200) 2012; 33 Maretschek (10.1016/j.addr.2016.04.019_bb0125) 2008; 127 Mourino (10.1016/j.addr.2016.04.019_bb0225) 2013; 10 |
| References_xml | – year: 2013 ident: bb0050 article-title: Biomaterials Science: An Introduction to Materials in Medicine – volume: 8 year: 2014 ident: bb0080 article-title: Electrospun nanofibers as versatile interfaces for efficient gene delivery publication-title: J. Biol. Eng. – volume: 33 start-page: 5067 year: 2012 end-page: 5075 ident: bb0200 article-title: Mechanical properties and biomineralization of multifunctional nanodiamond-PLLA composites for bone tissue engineering publication-title: Biomaterials – volume: 6 start-page: 2477 year: 2010 end-page: 2483 ident: bb0215 article-title: A facile method to fabricate poly(L-lactide) nano-fibrous morphologies by phase inversion publication-title: Acta Biomater. – volume: 9 start-page: 552 year: 2010 end-page: 571 ident: bb0015 article-title: Poly-lactic acid: production, applications, nanocomposites, and release studies publication-title: Compr. Rev. Food Sci. Food Saf. – volume: 439 start-page: 296 year: 2012 end-page: 306 ident: bb0145 article-title: Porous core/sheath composite nanofibers fabricated by coaxial electrospinning as a potential mat for drug release system publication-title: Int. J. Pharm. – volume: 10 start-page: 2257 year: 2010 end-page: 2261 ident: bb0310 article-title: Nanofiber assembly by rotary jet-spinning publication-title: Nano Lett. – volume: 54 start-page: 348 year: 2014 end-page: 376 ident: bb0335 article-title: Electrospun nanofibers as scaffolds for skin tissue engineering publication-title: Polym. Rev. – volume: 42 start-page: 1402 year: 2012 end-page: 1413 ident: bb0020 article-title: Poly (lactic acid) production for tissue engineering applications publication-title: Procedia Eng. – volume: 93 start-page: 204 year: 2011 end-page: 230 ident: bb0240 article-title: Construction of tissue engineered nerve grafts and their application in peripheral nerve regeneration publication-title: Prog. Neurobiol. – volume: 88a start-page: 281 year: 2009 end-page: 287 ident: bb0130 article-title: Surface immobilization of poly(ethyleneimine) and plasmid DNA on electrospun poly(L-lactic acid) fibrous mats using a layer-by-layer approach for gene delivery publication-title: J. Biomed. Mater. Res. A – volume: 34 start-page: 3891 year: 2013 end-page: 3901 ident: bb0385 article-title: An electrospun scaffold integrating nucleic acid delivery for treatment of full-thickness wounds publication-title: Biomaterials – volume: 131 year: 2014 ident: bb0355 article-title: Electrospun antibacterial nanofibers: production, activity, and in vivo applications publication-title: J. Appl. Polym. Sci. – volume: 17 start-page: 349 year: 2011 end-page: 364 ident: bb0270 article-title: Polymeric nanofibers in tissue engineering publication-title: Tissue Eng. Part B Rev. – volume: 35 start-page: 403 year: 2010 end-page: 440 ident: bb0165 article-title: Polymeric materials for bone and cartilage repair publication-title: Prog. Polym. Sci. – volume: 69 start-page: 464 year: 2014 end-page: 470 ident: bb0205 article-title: Fabrication of PLLA/beta-TCP nanocomposite scaffolds with hierarchical porosity for bone tissue engineering publication-title: Int. J. Biol. Macromol. – volume: 59 start-page: 234 year: 2007 end-page: 248 ident: bb0180 article-title: Ceramic composites as matrices and scaffolds for drug delivery in tissue engineering publication-title: Adv. Drug Deliv. Rev. – volume: 105 start-page: 43 year: 2005 end-page: 51 ident: bb0095 article-title: Influence of the drug compatibility with polymer solution on the release kinetics of electrospun fiber formulation publication-title: J. Control. Release – volume: 139 start-page: 48 year: 2009 end-page: 55 ident: bb0100 article-title: Sustained viral gene delivery through core-shell fibers publication-title: J. Control. Release – volume: 35 start-page: 190 year: 2014 end-page: 194 ident: bb0210 article-title: Improved mechanical properties of hydroxyapatite whisker-reinforced poly(L-lactic acid) scaffold by surface modification of hydroxyapatite publication-title: Mat. Sci. Eng. C Mater. – volume: 31 start-page: 654 year: 2013 end-page: 668 ident: bb0260 article-title: Nanomaterial scaffolds for stem cell proliferation and differentiation in tissue engineering publication-title: Biotechnol. Adv. – volume: 10 year: 2015 ident: bb0330 article-title: Development of small diameter nanofiber tissue engineered arterial grafts publication-title: PLoS One – volume: 72 start-page: 1048 year: 2015 end-page: 1055 ident: bb0325 article-title: Fabrication of poly (L-lactic acid)/gelatin composite tubular scaffolds for vascular tissue engineering publication-title: Int. J. Biol. Macromol. – volume: 40 start-page: 363 year: 2012 end-page: 408 ident: bb0185 article-title: Bone tissue engineering: recent advances and challenges publication-title: Crit. Rev. Biomed. Eng. – volume: 10 start-page: 1353 year: 2013 end-page: 1365 ident: bb0225 article-title: Composite polymer-bioceramic scaffolds with drug delivery capability for bone tissue engineering publication-title: Expert Opin. Drug Deliv. – volume: 12 start-page: 2158 year: 2011 end-page: 2173 ident: bb0370 article-title: Release of bacteriocins from nanofibers prepared with combinations of poly(D,L-lactide) (PDLLA) and poly(ethylene oxide) (PEO) publication-title: Int. J. Mol. Sci. – volume: 1 start-page: 259 year: 2005 end-page: 275 ident: bb0265 article-title: Electrospun nanofibrous scaffolds: production, characterization, and applications for tissue engineering and drug delivery publication-title: J. Biomed. Nanotechnol. – volume: 409 start-page: 216 year: 2011 end-page: 228 ident: bb0340 article-title: Electrospun fiber mats containing shikonin and derivatives with potential biomedical applications publication-title: Int. J. Pharm. – volume: 127 start-page: 180 year: 2008 end-page: 187 ident: bb0125 article-title: Electrospun biodegradable nanofiber nonwovens for controlled release of proteins publication-title: J. Control. Release – volume: 6 start-page: 016001 year: 2009 ident: bb0285 article-title: Creation of highly aligned electrospun poly-L-lactic acid fibers for nerve regeneration applications publication-title: J. Neural Eng. – volume: 24 start-page: 69 year: 2005 end-page: 82 ident: bb0045 article-title: Polylactide copolymers: effect of copolymer ratio and end capping on their properties publication-title: Adv. Polym. Technol. – volume: 8 start-page: 2997 year: 2013 end-page: 3017 ident: bb0090 article-title: Advances in drug delivery publication-title: Int. J. Nanomedicine – volume: 5 start-page: 49838 year: 2015 end-page: 49848 ident: bb0120 article-title: Coaxial electrospun poly(lactic acid)/silk fibroin nanofibers incorporated with nerve growth factor support the differentiation of neuronal stem cells publication-title: RSC Adv. – volume: 15 start-page: 333 year: 2009 end-page: 344 ident: bb0105 article-title: Fabrication of nonwoven coaxial fiber meshes by electrospinning publication-title: Tissue Eng. Part C Methods – volume: 34 start-page: 9089 year: 2013 end-page: 9095 ident: bb0275 article-title: Directed differentiation and neurite extension of mouse embryonic stem cell on aligned poly(lactide) nanofibers functionalized with YIGSR peptide publication-title: Biomaterials – volume: 10 start-page: 2240 year: 2009 end-page: 2244 ident: bb0315 article-title: Fabrication and properties of the electrospun polylactide/silk fibroin–gelatin composite tubular scaffold publication-title: Biomacromolecules – volume: 124 start-page: 4174 year: 2012 end-page: 4183 ident: bb0365 article-title: Preparation and performance evaluation of tetracycline hydrochloride loaded wound dressing mats based on electrospun nanofibrous poly(lactic acid)/poly(?-caprolactone) blends publication-title: J. Appl. Polym. Sci. – volume: 65 start-page: 471 year: 2013 end-page: 496 ident: bb0195 article-title: Naturally and synthetic smart composite biomaterials for tissue regeneration publication-title: Adv. Drug Deliv. Rev. – volume: 7 start-page: 30 year: 2004 end-page: 40 ident: bb0040 article-title: Scaffolds for tissue fabrication publication-title: Mater. Today – volume: 63 start-page: 242 year: 2011 end-page: 268 ident: bb0295 article-title: Aortic valve disease and treatment: the need for naturally engineered solutions publication-title: Adv. Drug Deliv. Rev. – volume: 220 start-page: 584 year: 2015 end-page: 591 ident: bb0085 article-title: Current strategies for sustaining drug release from electrospun nanofibers publication-title: J. Control. Release – volume: 303 start-page: H133 year: 2012 end-page: H143 ident: bb0305 article-title: Physiological aspects of cardiac tissue engineering publication-title: Am. J. Physiol. Heart Circ. Physiol. – volume: 72 start-page: 765 year: 2012 end-page: 772 ident: bb0070 article-title: Early stage evolution of structure and nanoscale property of nanofibers in thermally induced phase separation process publication-title: React. Funct. Polym. – volume: 45 start-page: 515 year: 2006 end-page: 524 ident: bb0150 article-title: Coaxial electrospun poly(L-lactic acid) ultrafine fibers for sustained drug delivery publication-title: J. Macromol. Sci. B – volume: 20 start-page: 1175 year: 2009 end-page: 1180 ident: bb0250 article-title: Evaluation of a multi-layer microbraided polylactic acid fiber-reinforced conduit for peripheral nerve regeneration publication-title: J. Mater. Sci. Mater. Med. – year: 2010 ident: bb0235 article-title: Biodegradable poly(lactic acid): synthesis, modification, processing and applications – volume: 131 start-page: 87 year: 2015 end-page: 104 ident: bb0245 article-title: Trends in the design of nerve guidance channels in peripheral nerve tissue engineering publication-title: Prog. Neurobiol. – volume: 15 start-page: 1381 year: 2009 end-page: 1390 ident: bb0290 article-title: Fabrication of the microgrooved/microporous polylactide substrates as peripheral nerve conduits and in vivo evaluation publication-title: Tissue Eng. A – volume: 35 start-page: 664 year: 2014 end-page: 674 ident: bb0280 article-title: Differentiation of neuronal stem cells into motor neurons using electrospun poly-L-lactic acid/gelatin scaffold publication-title: Biomaterials – volume: 30 start-page: 321 year: 2012 end-page: 328 ident: bb0025 article-title: Poly-lactic acid synthesis for application in biomedical devices—a review publication-title: Biotechnol. Adv. – volume: 32 start-page: 1496 year: 2012 end-page: 1502 ident: bb0065 article-title: Preparation and properties of biomimetic porous nanofibrous poly(l-lactide) scaffold with chitosan nanofiber network by a dual thermally induced phase separation technique publication-title: Mater. Sci. Eng., C Mater. – volume: 86 start-page: 1799 year: 2011 end-page: 1806 ident: bb0110 article-title: Coaxial electrospun poly(lactic acid)/chitosan (core/shell) composite nanofibers and their antibacterial activity publication-title: Carbohydr. Polym. – volume: 31 start-page: 7971 year: 2010 end-page: 7977 ident: bb0320 article-title: Porous nanofibrous PLLA scaffolds for vascular tissue engineering publication-title: Biomaterials – volume: 20 start-page: 790 year: 2014 end-page: 797 ident: bb0380 article-title: Skin tissue engineering for the infected wound site: biodegradable PLA nanofibers and a novel approach for silver ion release evaluated in a 3D coculture system of keratinocytes and publication-title: Tissue Eng. Part C Methods – volume: 213 start-page: E62 year: 2015 end-page: E63 ident: bb0170 article-title: Preparation of antibacterial silver nanoparticle-coated PLLA grafted hydroxyapatite/PLLA composite electrospun fiber publication-title: J. Control. Release – volume: 20 start-page: 389 year: 2009 end-page: 398 ident: bb0030 article-title: Mechanical design optimization of bioabsorbable fixation devices for bone fractures publication-title: J. Craniofac. Surg. – volume: 12 start-page: 761 year: 2012 end-page: 769 ident: bb0255 article-title: Development of channeled nanofibrous scaffolds for oriented tissue engineering publication-title: Macromol. Biosci. – volume: 38 start-page: 1504 year: 2013 end-page: 1542 ident: bb0230 article-title: Polylactide (PLA)-based nanocomposites publication-title: Prog. Polym. Sci. – year: 2013 ident: bb0140 article-title: A review of the effect of processing variables on the fabrication of electrospun nanofibers for drug delivery applications publication-title: J. Nanomater. – volume: 8 start-page: 3997 year: 2012 end-page: 4006 ident: bb0220 article-title: Biomimetic poly(lactide) based fibrous scaffolds for ligament tissue engineering publication-title: Acta Biomater. – volume: 10 start-page: 11 year: 2014 end-page: 25 ident: bb0300 article-title: Electrospun scaffolds for tissue engineering of vascular grafts publication-title: Acta Biomater. – year: 2015 ident: bb0350 article-title: Ibuprofen loaded PLA nanofibrous scaffolds increase proliferation of human skin cells in vitro and promote healing of full thickness incision wounds in vivo publication-title: J. Biomed. Mater. Res. B Appl. Biomater. – volume: 7 start-page: 2796 year: 2006 end-page: 2805 ident: bb0060 article-title: Electrospun poly(epsilon-caprolactone) microfiber and multilayer nanofiber/microfiber scaffolds: characterization of scaffolds and measurement of cellular infiltration publication-title: Biomacromolecules – volume: 48 start-page: 7125 year: 2013 end-page: 7133 ident: bb0345 article-title: Characteristics of curcumin-loaded poly (lactic acid) nanofibers for wound healing publication-title: J. Mater. Sci. – volume: 364 start-page: 87 year: 2008 end-page: 93 ident: bb0360 article-title: Electrospun nanofibrous polymeric scaffold with targeted drug release profiles for potential application as wound dressing publication-title: Int. J. Pharm. – volume: 439 start-page: 296 year: 2012 end-page: 306 ident: bb0115 article-title: Porous core/sheath composite nanofibers fabricated by coaxial electrospinning as a potential mat for drug release system publication-title: Int. J. Pharm. – volume: 17 start-page: 93 year: 1996 end-page: 102 ident: bb0175 article-title: Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid polyglycolic acid copolymers publication-title: Biomaterials – volume: 90 start-page: 290 year: 2005 end-page: 302 ident: bb0160 article-title: Gene delivery through cell culture substrate adsorbed DNA complexes publication-title: Biotechnol. Bioeng. – volume: 33 start-page: 4002 year: 2013 end-page: 4008 ident: bb0135 article-title: Drug delivery systems using sandwich configurations of electrospun poly(lactic acid) nanofiber membranes and ibuprofen publication-title: Mater. Sci. Eng., C Mater. – volume: 61 start-page: 1033 year: 2009 end-page: 1042 ident: bb0075 article-title: Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery publication-title: Adv. Drug Deliv. Rev. – volume: 9 start-page: 9461 year: 2013 end-page: 9473 ident: bb0390 article-title: inhibition of hypertrophic scars by implantable ginsenoside-Rg3-loaded electrospun fibrous membranes publication-title: Acta Biomater. – start-page: 794 year: 2009 end-page: 800 ident: bb0010 article-title: Poly(lactic acid) publication-title: Polymer Data Handbook – volume: 260 start-page: 920 year: 1993 end-page: 926 ident: bb0035 article-title: Tissue engineering publication-title: Science – year: 2007 ident: bb0005 article-title: Principles of Tissue Engineering – volume: 12 start-page: 1197 year: 2006 end-page: 1211 ident: bb0055 article-title: Electrospinning of polymeric nanofibers for tissue engineering applications: a review publication-title: Tissue Eng. – volume: 14 start-page: B112 year: 2012 end-page: B122 ident: bb0155 article-title: Controlled delivery of gentamicin antibiotic from bioactive electrospun polylactide-based ultrathin fibers publication-title: Adv. Eng. Mater. – volume: 32 start-page: 9622 year: 2011 end-page: 9629 ident: bb0190 article-title: Biomimetic nanofibrous scaffolds for bone tissue engineering publication-title: Biomaterials – volume: 57 start-page: 3928 year: 2013 end-page: 3935 ident: bb0375 article-title: Evaluation of a nisin-eluting nanofiber scaffold to treat publication-title: Antimicrob. Agents Chemother. – volume: 17 start-page: 93 year: 1996 ident: 10.1016/j.addr.2016.04.019_bb0175 article-title: Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid polyglycolic acid copolymers publication-title: Biomaterials doi: 10.1016/0142-9612(96)85754-1 – start-page: 794 year: 2009 ident: 10.1016/j.addr.2016.04.019_bb0010 article-title: Poly(lactic acid) – volume: 35 start-page: 190 year: 2014 ident: 10.1016/j.addr.2016.04.019_bb0210 article-title: Improved mechanical properties of hydroxyapatite whisker-reinforced poly(L-lactic acid) scaffold by surface modification of hydroxyapatite publication-title: Mat. Sci. Eng. C Mater. doi: 10.1016/j.msec.2013.11.008 – volume: 105 start-page: 43 year: 2005 ident: 10.1016/j.addr.2016.04.019_bb0095 article-title: Influence of the drug compatibility with polymer solution on the release kinetics of electrospun fiber formulation publication-title: J. Control. Release doi: 10.1016/j.jconrel.2005.02.024 – volume: 303 start-page: H133 year: 2012 ident: 10.1016/j.addr.2016.04.019_bb0305 article-title: Physiological aspects of cardiac tissue engineering publication-title: Am. J. Physiol. Heart Circ. Physiol. doi: 10.1152/ajpheart.00007.2012 – year: 2007 ident: 10.1016/j.addr.2016.04.019_bb0005 – volume: 30 start-page: 321 year: 2012 ident: 10.1016/j.addr.2016.04.019_bb0025 article-title: Poly-lactic acid synthesis for application in biomedical devices—a review publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2011.06.019 – volume: 8 year: 2014 ident: 10.1016/j.addr.2016.04.019_bb0080 article-title: Electrospun nanofibers as versatile interfaces for efficient gene delivery publication-title: J. Biol. Eng. doi: 10.1186/1754-1611-8-30 – volume: 20 start-page: 1175 year: 2009 ident: 10.1016/j.addr.2016.04.019_bb0250 article-title: Evaluation of a multi-layer microbraided polylactic acid fiber-reinforced conduit for peripheral nerve regeneration publication-title: J. Mater. Sci. Mater. Med. doi: 10.1007/s10856-008-3646-4 – volume: 127 start-page: 180 year: 2008 ident: 10.1016/j.addr.2016.04.019_bb0125 article-title: Electrospun biodegradable nanofiber nonwovens for controlled release of proteins publication-title: J. Control. Release doi: 10.1016/j.jconrel.2008.01.011 – volume: 14 start-page: B112 year: 2012 ident: 10.1016/j.addr.2016.04.019_bb0155 article-title: Controlled delivery of gentamicin antibiotic from bioactive electrospun polylactide-based ultrathin fibers publication-title: Adv. Eng. Mater. doi: 10.1002/adem.201180006 – volume: 10 start-page: 2240 year: 2009 ident: 10.1016/j.addr.2016.04.019_bb0315 article-title: Fabrication and properties of the electrospun polylactide/silk fibroin–gelatin composite tubular scaffold publication-title: Biomacromolecules doi: 10.1021/bm900416b – volume: 1 start-page: 259 year: 2005 ident: 10.1016/j.addr.2016.04.019_bb0265 article-title: Electrospun nanofibrous scaffolds: production, characterization, and applications for tissue engineering and drug delivery publication-title: J. Biomed. Nanotechnol. doi: 10.1166/jbn.2005.032 – year: 2015 ident: 10.1016/j.addr.2016.04.019_bb0350 article-title: Ibuprofen loaded PLA nanofibrous scaffolds increase proliferation of human skin cells in vitro and promote healing of full thickness incision wounds in vivo publication-title: J. Biomed. Mater. Res. B Appl. Biomater. – volume: 63 start-page: 242 year: 2011 ident: 10.1016/j.addr.2016.04.019_bb0295 article-title: Aortic valve disease and treatment: the need for naturally engineered solutions publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2011.01.008 – volume: 61 start-page: 1033 year: 2009 ident: 10.1016/j.addr.2016.04.019_bb0075 article-title: Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2009.07.007 – volume: 35 start-page: 664 year: 2014 ident: 10.1016/j.addr.2016.04.019_bb0280 article-title: Differentiation of neuronal stem cells into motor neurons using electrospun poly-L-lactic acid/gelatin scaffold publication-title: Biomaterials doi: 10.1016/j.biomaterials.2013.09.097 – volume: 131 year: 2014 ident: 10.1016/j.addr.2016.04.019_bb0355 article-title: Electrospun antibacterial nanofibers: production, activity, and in vivo applications publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.40797 – volume: 124 start-page: 4174 year: 2012 ident: 10.1016/j.addr.2016.04.019_bb0365 article-title: Preparation and performance evaluation of tetracycline hydrochloride loaded wound dressing mats based on electrospun nanofibrous poly(lactic acid)/poly(?-caprolactone) blends publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.35372 – year: 2013 ident: 10.1016/j.addr.2016.04.019_bb0140 article-title: A review of the effect of processing variables on the fabrication of electrospun nanofibers for drug delivery applications publication-title: J. Nanomater. doi: 10.1155/2013/789289 – volume: 12 start-page: 1197 year: 2006 ident: 10.1016/j.addr.2016.04.019_bb0055 article-title: Electrospinning of polymeric nanofibers for tissue engineering applications: a review publication-title: Tissue Eng. doi: 10.1089/ten.2006.12.1197 – volume: 65 start-page: 471 year: 2013 ident: 10.1016/j.addr.2016.04.019_bb0195 article-title: Naturally and synthetic smart composite biomaterials for tissue regeneration publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2012.03.009 – volume: 54 start-page: 348 year: 2014 ident: 10.1016/j.addr.2016.04.019_bb0335 article-title: Electrospun nanofibers as scaffolds for skin tissue engineering publication-title: Polym. Rev. doi: 10.1080/15583724.2014.881374 – volume: 34 start-page: 3891 year: 2013 ident: 10.1016/j.addr.2016.04.019_bb0385 article-title: An electrospun scaffold integrating nucleic acid delivery for treatment of full-thickness wounds publication-title: Biomaterials doi: 10.1016/j.biomaterials.2013.02.016 – volume: 72 start-page: 765 year: 2012 ident: 10.1016/j.addr.2016.04.019_bb0070 article-title: Early stage evolution of structure and nanoscale property of nanofibers in thermally induced phase separation process publication-title: React. Funct. Polym. doi: 10.1016/j.reactfunctpolym.2012.07.011 – volume: 10 start-page: 11 year: 2014 ident: 10.1016/j.addr.2016.04.019_bb0300 article-title: Electrospun scaffolds for tissue engineering of vascular grafts publication-title: Acta Biomater. doi: 10.1016/j.actbio.2013.08.022 – year: 2013 ident: 10.1016/j.addr.2016.04.019_bb0050 – volume: 86 start-page: 1799 year: 2011 ident: 10.1016/j.addr.2016.04.019_bb0110 article-title: Coaxial electrospun poly(lactic acid)/chitosan (core/shell) composite nanofibers and their antibacterial activity publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2011.07.014 – volume: 57 start-page: 3928 year: 2013 ident: 10.1016/j.addr.2016.04.019_bb0375 article-title: Evaluation of a nisin-eluting nanofiber scaffold to treat Staphylococcus aureus-induced skin infections in mice publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.00622-13 – volume: 10 start-page: 1353 year: 2013 ident: 10.1016/j.addr.2016.04.019_bb0225 article-title: Composite polymer-bioceramic scaffolds with drug delivery capability for bone tissue engineering publication-title: Expert Opin. Drug Deliv. doi: 10.1517/17425247.2013.808183 – volume: 69 start-page: 464 year: 2014 ident: 10.1016/j.addr.2016.04.019_bb0205 article-title: Fabrication of PLLA/beta-TCP nanocomposite scaffolds with hierarchical porosity for bone tissue engineering publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2014.06.004 – volume: 9 start-page: 552 year: 2010 ident: 10.1016/j.addr.2016.04.019_bb0015 article-title: Poly-lactic acid: production, applications, nanocomposites, and release studies publication-title: Compr. Rev. Food Sci. Food Saf. doi: 10.1111/j.1541-4337.2010.00126.x – volume: 8 start-page: 3997 year: 2012 ident: 10.1016/j.addr.2016.04.019_bb0220 article-title: Biomimetic poly(lactide) based fibrous scaffolds for ligament tissue engineering publication-title: Acta Biomater. doi: 10.1016/j.actbio.2012.07.012 – volume: 24 start-page: 69 year: 2005 ident: 10.1016/j.addr.2016.04.019_bb0045 article-title: Polylactide copolymers: effect of copolymer ratio and end capping on their properties publication-title: Adv. Polym. Technol. doi: 10.1002/adv.20032 – volume: 15 start-page: 1381 year: 2009 ident: 10.1016/j.addr.2016.04.019_bb0290 article-title: Fabrication of the microgrooved/microporous polylactide substrates as peripheral nerve conduits and in vivo evaluation publication-title: Tissue Eng. A doi: 10.1089/ten.tea.2008.0175 – volume: 72 start-page: 1048 year: 2015 ident: 10.1016/j.addr.2016.04.019_bb0325 article-title: Fabrication of poly (L-lactic acid)/gelatin composite tubular scaffolds for vascular tissue engineering publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2014.09.058 – volume: 12 start-page: 2158 year: 2011 ident: 10.1016/j.addr.2016.04.019_bb0370 article-title: Release of bacteriocins from nanofibers prepared with combinations of poly(D,L-lactide) (PDLLA) and poly(ethylene oxide) (PEO) publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms12042158 – volume: 20 start-page: 790 year: 2014 ident: 10.1016/j.addr.2016.04.019_bb0380 article-title: Skin tissue engineering for the infected wound site: biodegradable PLA nanofibers and a novel approach for silver ion release evaluated in a 3D coculture system of keratinocytes and Staphylococcus aureus publication-title: Tissue Eng. Part C Methods doi: 10.1089/ten.tec.2013.0458 – volume: 34 start-page: 9089 year: 2013 ident: 10.1016/j.addr.2016.04.019_bb0275 article-title: Directed differentiation and neurite extension of mouse embryonic stem cell on aligned poly(lactide) nanofibers functionalized with YIGSR peptide publication-title: Biomaterials doi: 10.1016/j.biomaterials.2013.08.028 – volume: 38 start-page: 1504 year: 2013 ident: 10.1016/j.addr.2016.04.019_bb0230 article-title: Polylactide (PLA)-based nanocomposites publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2013.05.014 – volume: 439 start-page: 296 year: 2012 ident: 10.1016/j.addr.2016.04.019_bb0145 article-title: Porous core/sheath composite nanofibers fabricated by coaxial electrospinning as a potential mat for drug release system publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2012.09.019 – volume: 93 start-page: 204 year: 2011 ident: 10.1016/j.addr.2016.04.019_bb0240 article-title: Construction of tissue engineered nerve grafts and their application in peripheral nerve regeneration publication-title: Prog. Neurobiol. doi: 10.1016/j.pneurobio.2010.11.002 – volume: 31 start-page: 654 year: 2013 ident: 10.1016/j.addr.2016.04.019_bb0260 article-title: Nanomaterial scaffolds for stem cell proliferation and differentiation in tissue engineering publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2012.08.001 – volume: 90 start-page: 290 year: 2005 ident: 10.1016/j.addr.2016.04.019_bb0160 article-title: Gene delivery through cell culture substrate adsorbed DNA complexes publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.20393 – volume: 12 start-page: 761 year: 2012 ident: 10.1016/j.addr.2016.04.019_bb0255 article-title: Development of channeled nanofibrous scaffolds for oriented tissue engineering publication-title: Macromol. Biosci. doi: 10.1002/mabi.201200004 – volume: 439 start-page: 296 year: 2012 ident: 10.1016/j.addr.2016.04.019_bb0115 article-title: Porous core/sheath composite nanofibers fabricated by coaxial electrospinning as a potential mat for drug release system publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2012.09.019 – volume: 6 start-page: 2477 year: 2010 ident: 10.1016/j.addr.2016.04.019_bb0215 article-title: A facile method to fabricate poly(L-lactide) nano-fibrous morphologies by phase inversion publication-title: Acta Biomater. doi: 10.1016/j.actbio.2009.12.051 – volume: 40 start-page: 363 year: 2012 ident: 10.1016/j.addr.2016.04.019_bb0185 article-title: Bone tissue engineering: recent advances and challenges publication-title: Crit. Rev. Biomed. Eng. doi: 10.1615/CritRevBiomedEng.v40.i5.10 – volume: 32 start-page: 9622 year: 2011 ident: 10.1016/j.addr.2016.04.019_bb0190 article-title: Biomimetic nanofibrous scaffolds for bone tissue engineering publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.09.009 – volume: 409 start-page: 216 year: 2011 ident: 10.1016/j.addr.2016.04.019_bb0340 article-title: Electrospun fiber mats containing shikonin and derivatives with potential biomedical applications publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2011.02.004 – volume: 59 start-page: 234 year: 2007 ident: 10.1016/j.addr.2016.04.019_bb0180 article-title: Ceramic composites as matrices and scaffolds for drug delivery in tissue engineering publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2007.03.011 – volume: 33 start-page: 4002 year: 2013 ident: 10.1016/j.addr.2016.04.019_bb0135 article-title: Drug delivery systems using sandwich configurations of electrospun poly(lactic acid) nanofiber membranes and ibuprofen publication-title: Mater. Sci. Eng., C Mater. doi: 10.1016/j.msec.2013.05.034 – volume: 10 start-page: 2257 year: 2010 ident: 10.1016/j.addr.2016.04.019_bb0310 article-title: Nanofiber assembly by rotary jet-spinning publication-title: Nano Lett. doi: 10.1021/nl101355x – volume: 220 start-page: 584 year: 2015 ident: 10.1016/j.addr.2016.04.019_bb0085 article-title: Current strategies for sustaining drug release from electrospun nanofibers publication-title: J. Control. Release doi: 10.1016/j.jconrel.2015.09.008 – volume: 139 start-page: 48 year: 2009 ident: 10.1016/j.addr.2016.04.019_bb0100 article-title: Sustained viral gene delivery through core-shell fibers publication-title: J. Control. Release doi: 10.1016/j.jconrel.2009.06.007 – volume: 10 year: 2015 ident: 10.1016/j.addr.2016.04.019_bb0330 article-title: Development of small diameter nanofiber tissue engineered arterial grafts publication-title: PLoS One doi: 10.1371/journal.pone.0120328 – volume: 260 start-page: 920 year: 1993 ident: 10.1016/j.addr.2016.04.019_bb0035 article-title: Tissue engineering publication-title: Science doi: 10.1126/science.8493529 – volume: 20 start-page: 389 year: 2009 ident: 10.1016/j.addr.2016.04.019_bb0030 article-title: Mechanical design optimization of bioabsorbable fixation devices for bone fractures publication-title: J. Craniofac. Surg. doi: 10.1097/SCS.0b013e31819b96fb – year: 2010 ident: 10.1016/j.addr.2016.04.019_bb0235 – volume: 48 start-page: 7125 year: 2013 ident: 10.1016/j.addr.2016.04.019_bb0345 article-title: Characteristics of curcumin-loaded poly (lactic acid) nanofibers for wound healing publication-title: J. Mater. Sci. doi: 10.1007/s10853-013-7527-y – volume: 33 start-page: 5067 year: 2012 ident: 10.1016/j.addr.2016.04.019_bb0200 article-title: Mechanical properties and biomineralization of multifunctional nanodiamond-PLLA composites for bone tissue engineering publication-title: Biomaterials doi: 10.1016/j.biomaterials.2012.03.063 – volume: 6 start-page: 016001 year: 2009 ident: 10.1016/j.addr.2016.04.019_bb0285 article-title: Creation of highly aligned electrospun poly-L-lactic acid fibers for nerve regeneration applications publication-title: J. Neural Eng. doi: 10.1088/1741-2560/6/1/016001 – volume: 31 start-page: 7971 year: 2010 ident: 10.1016/j.addr.2016.04.019_bb0320 article-title: Porous nanofibrous PLLA scaffolds for vascular tissue engineering publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.07.028 – volume: 32 start-page: 1496 year: 2012 ident: 10.1016/j.addr.2016.04.019_bb0065 article-title: Preparation and properties of biomimetic porous nanofibrous poly(l-lactide) scaffold with chitosan nanofiber network by a dual thermally induced phase separation technique publication-title: Mater. Sci. Eng., C Mater. doi: 10.1016/j.msec.2012.04.031 – volume: 5 start-page: 49838 year: 2015 ident: 10.1016/j.addr.2016.04.019_bb0120 article-title: Coaxial electrospun poly(lactic acid)/silk fibroin nanofibers incorporated with nerve growth factor support the differentiation of neuronal stem cells publication-title: RSC Adv. doi: 10.1039/C5RA05773F – volume: 131 start-page: 87 year: 2015 ident: 10.1016/j.addr.2016.04.019_bb0245 article-title: Trends in the design of nerve guidance channels in peripheral nerve tissue engineering publication-title: Prog. Neurobiol. doi: 10.1016/j.pneurobio.2015.06.001 – volume: 35 start-page: 403 year: 2010 ident: 10.1016/j.addr.2016.04.019_bb0165 article-title: Polymeric materials for bone and cartilage repair publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2010.01.006 – volume: 364 start-page: 87 year: 2008 ident: 10.1016/j.addr.2016.04.019_bb0360 article-title: Electrospun nanofibrous polymeric scaffold with targeted drug release profiles for potential application as wound dressing publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2008.07.033 – volume: 17 start-page: 349 year: 2011 ident: 10.1016/j.addr.2016.04.019_bb0270 article-title: Polymeric nanofibers in tissue engineering publication-title: Tissue Eng. Part B Rev. doi: 10.1089/ten.teb.2011.0238 – volume: 213 start-page: E62 year: 2015 ident: 10.1016/j.addr.2016.04.019_bb0170 article-title: Preparation of antibacterial silver nanoparticle-coated PLLA grafted hydroxyapatite/PLLA composite electrospun fiber publication-title: J. Control. Release doi: 10.1016/j.jconrel.2015.05.103 – volume: 7 start-page: 30 year: 2004 ident: 10.1016/j.addr.2016.04.019_bb0040 article-title: Scaffolds for tissue fabrication publication-title: Mater. Today doi: 10.1016/S1369-7021(04)00233-0 – volume: 15 start-page: 333 year: 2009 ident: 10.1016/j.addr.2016.04.019_bb0105 article-title: Fabrication of nonwoven coaxial fiber meshes by electrospinning publication-title: Tissue Eng. Part C Methods doi: 10.1089/ten.tec.2008.0422 – volume: 42 start-page: 1402 year: 2012 ident: 10.1016/j.addr.2016.04.019_bb0020 article-title: Poly (lactic acid) production for tissue engineering applications publication-title: Procedia Eng. doi: 10.1016/j.proeng.2012.07.534 – volume: 88a start-page: 281 year: 2009 ident: 10.1016/j.addr.2016.04.019_bb0130 article-title: Surface immobilization of poly(ethyleneimine) and plasmid DNA on electrospun poly(L-lactic acid) fibrous mats using a layer-by-layer approach for gene delivery publication-title: J. Biomed. Mater. Res. A doi: 10.1002/jbm.a.31870 – volume: 45 start-page: 515 year: 2006 ident: 10.1016/j.addr.2016.04.019_bb0150 article-title: Coaxial electrospun poly(L-lactic acid) ultrafine fibers for sustained drug delivery publication-title: J. Macromol. Sci. B doi: 10.1080/00222340600769832 – volume: 9 start-page: 9461 year: 2013 ident: 10.1016/j.addr.2016.04.019_bb0390 article-title: In vivo inhibition of hypertrophic scars by implantable ginsenoside-Rg3-loaded electrospun fibrous membranes publication-title: Acta Biomater. doi: 10.1016/j.actbio.2013.07.040 – volume: 7 start-page: 2796 year: 2006 ident: 10.1016/j.addr.2016.04.019_bb0060 article-title: Electrospun poly(epsilon-caprolactone) microfiber and multilayer nanofiber/microfiber scaffolds: characterization of scaffolds and measurement of cellular infiltration publication-title: Biomacromolecules doi: 10.1021/bm060680j – volume: 8 start-page: 2997 year: 2013 ident: 10.1016/j.addr.2016.04.019_bb0090 article-title: Advances in drug delivery via electrospun and electrosprayed nanomaterials publication-title: Int. J. Nanomedicine |
| SSID | ssj0012760 |
| Score | 2.6537733 |
| SecondaryResourceType | review_article |
| Snippet | Poly(lactic acid) (PLA) is a synthetic polyester that has shown extensive utility in tissue engineering. Synthesized either by ring opening polymerization or... |
| SourceID | pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 206 |
| SubjectTerms | Animals Drug delivery Humans Lactic Acid - chemistry Nanofibers Nanofibers - chemistry PLA Polyesters - chemistry Scaffolds Tissue engineering Tissue Engineering - methods Tissue Scaffolds - chemistry |
| Title | Poly(lactic acid) nanofibrous scaffolds for tissue engineering |
| URI | https://dx.doi.org/10.1016/j.addr.2016.04.019 https://www.ncbi.nlm.nih.gov/pubmed/27125190 https://www.proquest.com/docview/1826680719 https://pubmed.ncbi.nlm.nih.gov/PMC5081275 |
| Volume | 107 |
| WOSCitedRecordID | wos000390505500013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection - Elsevier customDbUrl: eissn: 1872-8294 dateEnd: 20171031 omitProxy: false ssIdentifier: ssj0012760 issn: 0169-409X databaseCode: AIEXJ dateStart: 19950701 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBZpu8FextbdskvRYJQN18FXyX4ZhNHdWEtYO8ibkWR5SReckqSl-QP73TvHshWnYWUb7MUE3yL0fT7-dHwuhLwScREUTDE3YnnqRnEo3QS2rg4UT_1CAAdk1WyCHx8nw2E66HR-NrkwlxNelsnVVXr-X6GGfQA2ps7-Bdz2prADfgPosAXYYftHwA-m2Dw6mVTZT45QOIDUKUUJd5UzjHidK1EU00k-NzGG1dQ7elWYsC1Y-02MQD67-O7keoJxHMs648Xq8RNsRWwyZo5gOqd2_0iMar_zeCGcr72W_74O52jCa5wv9uDR-IcJ_utjg-PxdO586LW9E37V08fkZxqX2UbajPFiMuCFV_XQhZeQsbwJB9McmI7H1jSbjriNcfVY6z0dmPDrjVeA8Uac9cBwY71Xn1WlbGu7vF5a-wQHguMAUYoOObZFdgIep2Add_qfDoef7feogFf55nbgdfqViRS8_k-_kzibS5jrkbgtaXN6j9yt1yS0b7h0n3R0uUtumy6ly12yPzDlzZcH9HSVrTc_oPt0sCp8vnxA3iL1XhviUSTeG9qiHbW0o0A7amhHW7R7SL69Pzx999Gt-3O4KorjhQtiVYowj3QIGpIVPk-UTAoFS9SA56HWUnLuwfMegMoVnOWgbgsW8TDUIDt5LMNHZLuclvoJoZLBDGumwtArIrgwVTKKi0T4imuZ5rpL_GZKM1UXr8ceKpOsiVI8yxCGDGHIvCgDGLrEsdecm9ItN54dN0hltfg0ojIDYt143csG1gwsM35uE6WGWc1w5c4SkPBwzmMDsx1HwHFhkXpdwtcIYE_Aqu_rR8rxqKr-DisqbMrw9B_H-4zcWT2nz8n2YnahX5Bb6hJgn-2RLT5M9mr2_wKqvtI7 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Poly%28lactic+acid%29+nanofibrous+scaffolds+for+tissue+engineering&rft.jtitle=Advanced+drug+delivery+reviews&rft.au=Santoro%2C+Marco&rft.au=Shah%2C+Sarita+R.&rft.au=Walker%2C+Jennifer+L.&rft.au=Mikos%2C+Antonios+G.&rft.date=2016-12-15&rft.pub=Elsevier+B.V&rft.issn=0169-409X&rft.eissn=1872-8294&rft.volume=107&rft.spage=206&rft.epage=212&rft_id=info:doi/10.1016%2Fj.addr.2016.04.019&rft.externalDocID=S0169409X16301296 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-409X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-409X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-409X&client=summon |