VitalDB, a high-fidelity multi-parameter vital signs database in surgical patients
In modern anesthesia, multiple medical devices are used simultaneously to comprehensively monitor real-time vital signs to optimize patient care and improve surgical outcomes. However, interpreting the dynamic changes of time-series biosignals and their correlations is a difficult task even for expe...
Gespeichert in:
| Veröffentlicht in: | Scientific data Jg. 9; H. 1; S. 279 - 9 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Nature Publishing Group UK
08.06.2022
Nature Publishing Group Nature Portfolio |
| Schlagworte: | |
| ISSN: | 2052-4463, 2052-4463 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In modern anesthesia, multiple medical devices are used simultaneously to comprehensively monitor real-time vital signs to optimize patient care and improve surgical outcomes. However, interpreting the dynamic changes of time-series biosignals and their correlations is a difficult task even for experienced anesthesiologists. Recent advanced machine learning technologies have shown promising results in biosignal analysis, however, research and development in this area is relatively slow due to the lack of biosignal datasets for machine learning. The VitalDB (Vital Signs DataBase) is an open dataset created specifically to facilitate machine learning studies related to monitoring vital signs in surgical patients. This dataset contains high-resolution multi-parameter data from 6,388 cases, including 486,451 waveform and numeric data tracks of 196 intraoperative monitoring parameters, 73 perioperative clinical parameters, and 34 time-series laboratory result parameters. All data is stored in the public cloud after anonymization. The dataset can be freely accessed and analysed using application programming interfaces and Python library. The VitalDB public dataset is expected to be a valuable resource for biosignal research and development.
Measurement(s)
vital signs of patients during surgery • perioperative patient information
Technology Type(s)
Vital Signs Measurement • Electronic Medical Record
Factor Type(s)
vital signs data including various numeric and waveform data acquired from multiple patient monitors • perioperative patient information acquired from the electronic medical record system
Sample Characteristic - Organism
Homo sapiens
Sample Characteristic - Environment
hospital
Sample Characteristic - Location
South Korea |
|---|---|
| AbstractList | In modern anesthesia, multiple medical devices are used simultaneously to comprehensively monitor real-time vital signs to optimize patient care and improve surgical outcomes. However, interpreting the dynamic changes of time-series biosignals and their correlations is a difficult task even for experienced anesthesiologists. Recent advanced machine learning technologies have shown promising results in biosignal analysis, however, research and development in this area is relatively slow due to the lack of biosignal datasets for machine learning. The VitalDB (Vital Signs DataBase) is an open dataset created specifically to facilitate machine learning studies related to monitoring vital signs in surgical patients. This dataset contains high-resolution multi-parameter data from 6,388 cases, including 486,451 waveform and numeric data tracks of 196 intraoperative monitoring parameters, 73 perioperative clinical parameters, and 34 time-series laboratory result parameters. All data is stored in the public cloud after anonymization. The dataset can be freely accessed and analysed using application programming interfaces and Python library. The VitalDB public dataset is expected to be a valuable resource for biosignal research and development.Measurement(s)vital signs of patients during surgery • perioperative patient informationTechnology Type(s)Vital Signs Measurement • Electronic Medical RecordFactor Type(s)vital signs data including various numeric and waveform data acquired from multiple patient monitors • perioperative patient information acquired from the electronic medical record systemSample Characteristic - OrganismHomo sapiensSample Characteristic - EnvironmenthospitalSample Characteristic - LocationSouth Korea In modern anesthesia, multiple medical devices are used simultaneously to comprehensively monitor real-time vital signs to optimize patient care and improve surgical outcomes. However, interpreting the dynamic changes of time-series biosignals and their correlations is a difficult task even for experienced anesthesiologists. Recent advanced machine learning technologies have shown promising results in biosignal analysis, however, research and development in this area is relatively slow due to the lack of biosignal datasets for machine learning. The VitalDB (Vital Signs DataBase) is an open dataset created specifically to facilitate machine learning studies related to monitoring vital signs in surgical patients. This dataset contains high-resolution multi-parameter data from 6,388 cases, including 486,451 waveform and numeric data tracks of 196 intraoperative monitoring parameters, 73 perioperative clinical parameters, and 34 time-series laboratory result parameters. All data is stored in the public cloud after anonymization. The dataset can be freely accessed and analysed using application programming interfaces and Python library. The VitalDB public dataset is expected to be a valuable resource for biosignal research and development. Measurement(s) vital signs of patients during surgery • perioperative patient information Technology Type(s) Vital Signs Measurement • Electronic Medical Record Factor Type(s) vital signs data including various numeric and waveform data acquired from multiple patient monitors • perioperative patient information acquired from the electronic medical record system Sample Characteristic - Organism Homo sapiens Sample Characteristic - Environment hospital Sample Characteristic - Location South Korea Measurement(s) vital signs of patients during surgery • perioperative patient information Technology Type(s) Vital Signs Measurement • Electronic Medical Record Factor Type(s) vital signs data including various numeric and waveform data acquired from multiple patient monitors • perioperative patient information acquired from the electronic medical record system Sample Characteristic - Organism Homo sapiens Sample Characteristic - Environment hospital Sample Characteristic - Location South Korea In modern anesthesia, multiple medical devices are used simultaneously to comprehensively monitor real-time vital signs to optimize patient care and improve surgical outcomes. However, interpreting the dynamic changes of time-series biosignals and their correlations is a difficult task even for experienced anesthesiologists. Recent advanced machine learning technologies have shown promising results in biosignal analysis, however, research and development in this area is relatively slow due to the lack of biosignal datasets for machine learning. The VitalDB (Vital Signs DataBase) is an open dataset created specifically to facilitate machine learning studies related to monitoring vital signs in surgical patients. This dataset contains high-resolution multi-parameter data from 6,388 cases, including 486,451 waveform and numeric data tracks of 196 intraoperative monitoring parameters, 73 perioperative clinical parameters, and 34 time-series laboratory result parameters. All data is stored in the public cloud after anonymization. The dataset can be freely accessed and analysed using application programming interfaces and Python library. The VitalDB public dataset is expected to be a valuable resource for biosignal research and development. In modern anesthesia, multiple medical devices are used simultaneously to comprehensively monitor real-time vital signs to optimize patient care and improve surgical outcomes. However, interpreting the dynamic changes of time-series biosignals and their correlations is a difficult task even for experienced anesthesiologists. Recent advanced machine learning technologies have shown promising results in biosignal analysis, however, research and development in this area is relatively slow due to the lack of biosignal datasets for machine learning. The VitalDB (Vital Signs DataBase) is an open dataset created specifically to facilitate machine learning studies related to monitoring vital signs in surgical patients. This dataset contains high-resolution multi-parameter data from 6,388 cases, including 486,451 waveform and numeric data tracks of 196 intraoperative monitoring parameters, 73 perioperative clinical parameters, and 34 time-series laboratory result parameters. All data is stored in the public cloud after anonymization. The dataset can be freely accessed and analysed using application programming interfaces and Python library. The VitalDB public dataset is expected to be a valuable resource for biosignal research and development. Measurement(s)vital signs of patients during surgery • perioperative patient informationTechnology Type(s)Vital Signs Measurement • Electronic Medical RecordFactor Type(s)vital signs data including various numeric and waveform data acquired from multiple patient monitors • perioperative patient information acquired from the electronic medical record systemSample Characteristic - OrganismHomo sapiensSample Characteristic - EnvironmenthospitalSample Characteristic - LocationSouth Korea In modern anesthesia, multiple medical devices are used simultaneously to comprehensively monitor real-time vital signs to optimize patient care and improve surgical outcomes. However, interpreting the dynamic changes of time-series biosignals and their correlations is a difficult task even for experienced anesthesiologists. Recent advanced machine learning technologies have shown promising results in biosignal analysis, however, research and development in this area is relatively slow due to the lack of biosignal datasets for machine learning. The VitalDB (Vital Signs DataBase) is an open dataset created specifically to facilitate machine learning studies related to monitoring vital signs in surgical patients. This dataset contains high-resolution multi-parameter data from 6,388 cases, including 486,451 waveform and numeric data tracks of 196 intraoperative monitoring parameters, 73 perioperative clinical parameters, and 34 time-series laboratory result parameters. All data is stored in the public cloud after anonymization. The dataset can be freely accessed and analysed using application programming interfaces and Python library. The VitalDB public dataset is expected to be a valuable resource for biosignal research and development.In modern anesthesia, multiple medical devices are used simultaneously to comprehensively monitor real-time vital signs to optimize patient care and improve surgical outcomes. However, interpreting the dynamic changes of time-series biosignals and their correlations is a difficult task even for experienced anesthesiologists. Recent advanced machine learning technologies have shown promising results in biosignal analysis, however, research and development in this area is relatively slow due to the lack of biosignal datasets for machine learning. The VitalDB (Vital Signs DataBase) is an open dataset created specifically to facilitate machine learning studies related to monitoring vital signs in surgical patients. This dataset contains high-resolution multi-parameter data from 6,388 cases, including 486,451 waveform and numeric data tracks of 196 intraoperative monitoring parameters, 73 perioperative clinical parameters, and 34 time-series laboratory result parameters. All data is stored in the public cloud after anonymization. The dataset can be freely accessed and analysed using application programming interfaces and Python library. The VitalDB public dataset is expected to be a valuable resource for biosignal research and development. |
| ArticleNumber | 279 |
| Author | Park, Dongnyeok Lee, Hyung-Chul Park, Yoonsang Jung, Chul-Woo Yoon, Soo Bin Yang, Seong Mi |
| Author_xml | – sequence: 1 givenname: Hyung-Chul surname: Lee fullname: Lee, Hyung-Chul organization: Department of Anesthesiology and Pain Medicine, Seoul National University College of Medicine, Seoul National University Hospital – sequence: 2 givenname: Yoonsang orcidid: 0000-0001-6200-2157 surname: Park fullname: Park, Yoonsang organization: Department of Anesthesiology and Pain Medicine, Seoul National University College of Medicine, Seoul National University Hospital – sequence: 3 givenname: Soo Bin surname: Yoon fullname: Yoon, Soo Bin organization: Department of Anesthesiology and Pain Medicine, Seoul National University College of Medicine, Seoul National University Hospital – sequence: 4 givenname: Seong Mi surname: Yang fullname: Yang, Seong Mi organization: Department of Anesthesiology and Pain Medicine, Seoul National University College of Medicine, Seoul National University Hospital – sequence: 5 givenname: Dongnyeok surname: Park fullname: Park, Dongnyeok organization: Department of Anesthesiology and Pain Medicine, Seoul National University College of Medicine, Seoul National University Hospital – sequence: 6 givenname: Chul-Woo orcidid: 0000-0001-7876-8659 surname: Jung fullname: Jung, Chul-Woo email: jungcwoo@gmail.com organization: Department of Anesthesiology and Pain Medicine, Seoul National University College of Medicine, Seoul National University Hospital |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35676300$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kktv1DAUhS1URB_0D7BAkdiwaMDPONkglfKqVAkJAVvr2rEzHmXiwXYq9d_jmbTQdtGVH_c7R8fX9xgdTGGyCL0i-B3BrH2fOBGdrDGlNSackFo8Q0cUC1pz3rCDe_tDdJrSGmNMGMdC4hfokIlGNgzjI_Tjt88wfvp4VkG18sOqdr63o8831WYes6-3EGFjs43V9Q6skh-mVPWQQUOylZ-qNMfBm1LaQvZ2yukleu5gTPb0dj1Bv758_nnxrb76_vXy4vyqNlwIUfdEit5J1hriKDPlxBpnDccAGAuroe2Is5I3klrqtMECqOW6ASf7pm86doIuF98-wFpto99AvFEBvNpfhDgoiNmb0aoWBGm1kGB4x7HVmkvNhNGlCb2jIIvXh8VrO-uN7U15R4TxgenDyuRXagjXqiOyxYwWg7e3BjH8mW3KauOTseMIkw1zUrSRXJaud7ygbx6h6zDHqbRqTxHWdrIt1Ov7if5Fufu6ArQLYGJIKVqnTPmh7MMuoB8VwWo3KGoZFFUGRe0HRYkipY-kd-5PitgiSgWeBhv_x35C9RfULM-Q |
| CitedBy_id | crossref_primary_10_1681_ASN_0000000775 crossref_primary_10_3390_bioengineering10070822 crossref_primary_10_1038_s41598_024_57971_6 crossref_primary_10_1088_1361_6579_ad75e4 crossref_primary_10_1088_1741_2552_ad6592 crossref_primary_10_1186_s12871_025_03100_3 crossref_primary_10_3390_app131911025 crossref_primary_10_1007_s44254_025_00091_9 crossref_primary_10_3390_e25121582 crossref_primary_10_1109_JSEN_2024_3512197 crossref_primary_10_1161_JAHA_123_032216 crossref_primary_10_3389_frai_2025_1533508 crossref_primary_10_1038_s41598_025_10172_1 crossref_primary_10_1213_ANE_0000000000007295 crossref_primary_10_1007_s10877_025_01357_0 crossref_primary_10_1109_ACCESS_2024_3449704 crossref_primary_10_34133_bmef_0111 crossref_primary_10_1016_j_bja_2025_03_024 crossref_primary_10_1080_0886022X_2023_2287130 crossref_primary_10_1093_jamia_ocad219 crossref_primary_10_1088_3049_477X_ae01a8 crossref_primary_10_3390_s25154792 crossref_primary_10_3390_s23229057 crossref_primary_10_1146_annurev_biodatasci_103123_095824 crossref_primary_10_1109_JSEN_2024_3468316 crossref_primary_10_3390_jpm14060587 crossref_primary_10_1109_ACCESS_2025_3540440 crossref_primary_10_1109_LCSYS_2023_3291665 crossref_primary_10_1016_j_bspc_2024_106788 crossref_primary_10_1016_j_hrtlng_2023_08_001 crossref_primary_10_1007_s10489_025_06391_8 crossref_primary_10_1007_s00540_025_03527_5 crossref_primary_10_1109_JBHI_2024_3483301 crossref_primary_10_1016_j_jclinane_2025_111810 crossref_primary_10_1038_s41598_024_84265_8 crossref_primary_10_1177_10892532251332464 crossref_primary_10_1016_j_ifacsc_2025_100324 crossref_primary_10_1016_j_bspc_2025_108380 crossref_primary_10_1016_j_jprocont_2024_103179 crossref_primary_10_1038_s41598_024_82026_1 crossref_primary_10_1161_HYPERTENSIONAHA_125_24822 crossref_primary_10_1186_s40708_024_00241_y crossref_primary_10_1016_j_accpm_2023_101248 crossref_primary_10_1016_j_device_2025_100778 crossref_primary_10_1109_JBHI_2024_3422023 crossref_primary_10_2196_64855 crossref_primary_10_1038_s41598_023_40769_3 crossref_primary_10_1177_0310057X241303622 crossref_primary_10_3390_s25061864 crossref_primary_10_1016_j_knosys_2025_114082 crossref_primary_10_1088_1361_6579_ad4e92 crossref_primary_10_1088_1361_6579_adcb86 crossref_primary_10_1016_j_tracli_2024_10_006 crossref_primary_10_1097_EJA_0000000000002027 crossref_primary_10_1109_ACCESS_2024_3524262 crossref_primary_10_1016_j_neucom_2025_129812 crossref_primary_10_1186_s12911_025_02986_w crossref_primary_10_3390_diagnostics14080816 crossref_primary_10_1097_ACO_0000000000001201 crossref_primary_10_1016_j_bja_2025_06_016 crossref_primary_10_1007_s10877_024_01206_6 crossref_primary_10_1186_s13741_025_00544_6 crossref_primary_10_3390_bioengineering12050493 crossref_primary_10_1016_j_ifacol_2024_10_319 crossref_primary_10_1016_j_eswa_2025_127994 crossref_primary_10_3349_ymj_2024_0020 crossref_primary_10_1016_j_asoc_2024_112390 crossref_primary_10_1213_ANE_0000000000006874 crossref_primary_10_1016_j_jbi_2024_104680 crossref_primary_10_1109_JIOT_2025_3579524 crossref_primary_10_1109_TBME_2024_3434344 crossref_primary_10_1109_JBHI_2024_3377128 crossref_primary_10_1186_s12911_025_02930_y crossref_primary_10_1007_s10489_024_05354_9 crossref_primary_10_1186_s12871_024_02784_3 crossref_primary_10_3389_fphys_2023_1126957 crossref_primary_10_3389_fphys_2024_1398904 crossref_primary_10_1016_j_asjsur_2025_06_171 crossref_primary_10_1038_s41597_024_03517_4 |
| Cites_doi | 10.1213/ANE.0000000000004473 10.1213/ane.0000000000002331 10.1016/j.bja.2020.09.049 10.1186/s12871-020-01122-7 10.1093/jamia/ocaa347 10.1038/s41598-019-50391-x 10.1038/s41598-018-20062-4 10.1213/ane.0000000000000027 10.1016/j.compbiomed.2019.04.027 10.1038/sdata.2018.178 10.5281/zenodo.6321507 10.2196/24762 10.17605/OSF.IO/DTC45 10.1016/j.bja.2020.12.035 10.1055/s-0038-1667083 10.1097/ALN.0000000000001892 10.1097/ccm.0000000000004916 10.5281/zenodo.6321522 10.1023/a:1024294700397 10.1016/j.bja.2021.03.011 10.1038/sdata.2016.35 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2022 2022. The Author(s). The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2022 – notice: 2022. The Author(s). – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.1038/s41597-022-01411-5 |
| DatabaseName | Springer Nature Open Access Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database (ProQuest) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ : Directory of Open Access Journals [open access] url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: ProQuest Publicly Available Content url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 2052-4463 |
| EndPage | 9 |
| ExternalDocumentID | oai_doaj_org_article_8a518b57ac4940ebb47b35cb763df2a7 PMC9178032 35676300 10_1038_s41597_022_01411_5 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: This study was supported by the Ministry of Science and ICT (MSIT), Republic of Korea, under the Information Technology Research Center (ITRC) support program (IITP-2022-2018-0-01833) supervised by the Institute for Information & communications Technology Promotion (IITP). This study was also supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (HI21C1074). – fundername: ; |
| GroupedDBID | 0R~ 3V. 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAJSJ ABUWG ACGFS ACSFO ACSMW ADBBV ADRAZ AFKRA AGHDO AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EJD FYUFA GROUPED_DOAJ HCIFZ HMCUK HYE KQ8 LK8 M1P M48 M7P M~E NAO OK1 PGMZT PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX CITATION CGR CUY CVF ECM EIF NPM 7XB 8FK AZQEC DWQXO GNUQQ K9. PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS 7X8 5PM |
| ID | FETCH-LOGICAL-c4555-d175df738c1f23c17536fec40aa005eba891fe74672e2fbc05a2e4b6af7d6d693 |
| IEDL.DBID | DOA |
| ISSN | 2052-4463 |
| IngestDate | Thu Dec 04 16:44:10 EST 2025 Tue Nov 04 01:49:52 EST 2025 Sun Nov 09 10:19:31 EST 2025 Tue Oct 07 06:55:11 EDT 2025 Wed Feb 19 02:26:57 EST 2025 Sat Nov 29 01:43:34 EST 2025 Tue Nov 18 22:11:21 EST 2025 Fri Feb 21 02:37:24 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | 2022. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4555-d175df738c1f23c17536fec40aa005eba891fe74672e2fbc05a2e4b6af7d6d693 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Undefined-1 ObjectType-Feature-3 content type line 23 |
| ORCID | 0000-0001-7876-8659 0000-0001-6200-2157 |
| OpenAccessLink | https://doaj.org/article/8a518b57ac4940ebb47b35cb763df2a7 |
| PMID | 35676300 |
| PQID | 2674138978 |
| PQPubID | 2041912 |
| PageCount | 9 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_8a518b57ac4940ebb47b35cb763df2a7 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9178032 proquest_miscellaneous_2674756794 proquest_journals_2674138978 pubmed_primary_35676300 crossref_citationtrail_10_1038_s41597_022_01411_5 crossref_primary_10_1038_s41597_022_01411_5 springer_journals_10_1038_s41597_022_01411_5 |
| PublicationCentury | 2000 |
| PublicationDate | 20220608 |
| PublicationDateYYYYMMDD | 2022-06-08 |
| PublicationDate_xml | – month: 6 year: 2022 text: 20220608 day: 8 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific data |
| PublicationTitleAbbrev | Sci Data |
| PublicationTitleAlternate | Sci Data |
| PublicationYear | 2022 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | Fahy, Chau (CR2) 2018; 126 Yang (CR18) 2021; 9 Barton (CR6) 2019; 109 Lee (CR17) 2021; 126 Saugel (CR3) 2021; 126 Pollard (CR11) 2018; 5 Anderson (CR1) 2020; 130 Ganapathy, Swaminathan, Deserno (CR4) 2018; 27 Romero-Brufau (CR5) 2021; 28 Lee, Jung (CR9) 2018; 8 Lee (CR21) 2022 CR10 Thoral (CR12) 2021; 49 Jung, Lee (CR19) 2022 Yoon (CR16) 2020; 20 Lee (CR20) 2022 Vistisen, Pollard, Enevoldsen, Scheeren (CR13) 2021; 127 Lee, Ryu, Chung, Jung (CR14) 2018; 128 Lee (CR15) 2019; 9 Nair (CR7) 2014; 118 Sticher (CR8) 2002; 17 BG Fahy (1411_CR2) 2018; 126 C-W Jung (1411_CR19) 2022 S Romero-Brufau (1411_CR5) 2021; 28 J Sticher (1411_CR8) 2002; 17 N Ganapathy (1411_CR4) 2018; 27 TA Anderson (1411_CR1) 2020; 130 HC Lee (1411_CR15) 2019; 9 PJ Thoral (1411_CR12) 2021; 49 S Lee (1411_CR17) 2021; 126 H-C Lee (1411_CR21) 2022 S Yoon (1411_CR16) 2020; 20 1411_CR10 H-C Lee (1411_CR20) 2022 C Barton (1411_CR6) 2019; 109 ST Vistisen (1411_CR13) 2021; 127 B Saugel (1411_CR3) 2021; 126 TJ Pollard (1411_CR11) 2018; 5 HC Lee (1411_CR14) 2018; 128 HC Lee (1411_CR9) 2018; 8 HL Yang (1411_CR18) 2021; 9 BG Nair (1411_CR7) 2014; 118 |
| References_xml | – volume: 130 start-page: 1261 year: 2020 end-page: 1263 ident: CR1 article-title: Intraoperative Analgesia-Nociception Monitors: Where We Are and Where We Want To Be publication-title: Anesth Analg doi: 10.1213/ANE.0000000000004473 – volume: 126 start-page: 111 year: 2018 end-page: 117 ident: CR2 article-title: The Technology of Processed Electroencephalogram Monitoring Devices for Assessment of Depth of Anesthesia publication-title: Anesth Analg doi: 10.1213/ane.0000000000002331 – volume: 126 start-page: 67 year: 2021 end-page: 76 ident: CR3 article-title: Cardiac output estimation using pulse wave analysis-physiology, algorithms, and technologies: a narrative review publication-title: Br J Anaesth doi: 10.1016/j.bja.2020.09.049 – volume: 20 start-page: 1 year: 2020 end-page: 9 ident: CR16 article-title: The cumulative duration of bispectral index less than 40 concurrent with hypotension is associated with 90-day postoperative mortality: a retrospective study publication-title: BMC anesthesiology doi: 10.1186/s12871-020-01122-7 – volume: 28 start-page: 1207 year: 2021 end-page: 1215 ident: CR5 article-title: Using machine learning to improve the accuracy of patient deterioration predictions: Mayo Clinic Early Warning Score (MC-EWS) publication-title: J Am Med Inform Assoc doi: 10.1093/jamia/ocaa347 – volume: 9 year: 2019 ident: CR15 article-title: Data Driven Investigation of Bispectral Index Algorithm publication-title: Sci Rep doi: 10.1038/s41598-019-50391-x – volume: 8 year: 2018 ident: CR9 article-title: Vital Recorder-a free research tool for automatic recording of high-resolution time-synchronised physiological data from multiple anaesthesia devices publication-title: Sci Rep doi: 10.1038/s41598-018-20062-4 – volume: 118 start-page: 206 year: 2014 end-page: 214 ident: CR7 article-title: Anesthesia information management system-based near real-time decision support to manage intraoperative hypotension and hypertension publication-title: Anesth Analg doi: 10.1213/ane.0000000000000027 – volume: 109 start-page: 79 year: 2019 end-page: 84 ident: CR6 article-title: Evaluation of a machine learning algorithm for up to 48-hour advance prediction of sepsis using six vital signs publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2019.04.027 – volume: 5 year: 2018 ident: CR11 article-title: The eICU Collaborative Research Database, a freely available multi-center database for critical care research publication-title: Sci Data doi: 10.1038/sdata.2018.178 – year: 2022 ident: CR20 publication-title: Github doi: 10.5281/zenodo.6321507 – ident: CR10 – volume: 9 start-page: e24762 year: 2021 ident: CR18 article-title: Development and Validation of an Arterial Pressure-Based Cardiac Output Algorithm Using a Convolutional Neural Network: Retrospective Study Based on Prospective Registry Data publication-title: JMIR Med Inform doi: 10.2196/24762 – year: 2022 ident: CR19 publication-title: Open Science Framework doi: 10.17605/OSF.IO/DTC45 – volume: 126 start-page: 808 year: 2021 end-page: 817 ident: CR17 article-title: Deep learning models for the prediction of intraoperative hypotension publication-title: Br J Anaesth doi: 10.1016/j.bja.2020.12.035 – volume: 27 start-page: 98 year: 2018 end-page: 109 ident: CR4 article-title: Deep Learning on 1-D Bio-signals: a Taxonomy-based Survey publication-title: Yearb Med Inform doi: 10.1055/s-0038-1667083 – volume: 128 start-page: 92 year: 2018 end-page: 501 ident: CR14 article-title: Prediction of Bispectral Index during Target-controlled Infusion of Propofol and Remifentanil: A Deep Learning Approach publication-title: Anesthesiology doi: 10.1097/ALN.0000000000001892 – volume: 49 start-page: e563 year: 2021 end-page: e577 ident: CR12 article-title: Sharing ICU Patient Data Responsibly Under the Society of Critical Care Medicine/European Society of Intensive Care Medicine Joint Data Science Collaboration: The Amsterdam University Medical Centers Database (AmsterdamUMCdb) Example publication-title: Crit Care Med doi: 10.1097/ccm.0000000000004916 – year: 2022 ident: CR21 publication-title: Github doi: 10.5281/zenodo.6321522 – volume: 17 start-page: 335 year: 2002 end-page: 343 ident: CR8 article-title: Computerize anesthesia record keeping in thoracic surgery–suitability of electronic anesthesia records in evaluating predictors for hypoxemia during one-lung ventilation publication-title: J Clin Monit Comput doi: 10.1023/a:1024294700397 – volume: 127 start-page: 184 year: 2021 end-page: 187 ident: CR13 article-title: VitalDB: fostering collaboration in anaesthesia research publication-title: Br J Anaesth doi: 10.1016/j.bja.2021.03.011 – volume: 27 start-page: 98 year: 2018 ident: 1411_CR4 publication-title: Yearb Med Inform doi: 10.1055/s-0038-1667083 – year: 2022 ident: 1411_CR19 doi: 10.17605/OSF.IO/DTC45 – volume: 109 start-page: 79 year: 2019 ident: 1411_CR6 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2019.04.027 – year: 2022 ident: 1411_CR21 doi: 10.5281/zenodo.6321522 – volume: 118 start-page: 206 year: 2014 ident: 1411_CR7 publication-title: Anesth Analg doi: 10.1213/ane.0000000000000027 – volume: 49 start-page: e563 year: 2021 ident: 1411_CR12 publication-title: Crit Care Med doi: 10.1097/ccm.0000000000004916 – volume: 126 start-page: 808 year: 2021 ident: 1411_CR17 publication-title: Br J Anaesth doi: 10.1016/j.bja.2020.12.035 – year: 2022 ident: 1411_CR20 doi: 10.5281/zenodo.6321507 – volume: 130 start-page: 1261 year: 2020 ident: 1411_CR1 publication-title: Anesth Analg doi: 10.1213/ANE.0000000000004473 – volume: 126 start-page: 67 year: 2021 ident: 1411_CR3 publication-title: Br J Anaesth doi: 10.1016/j.bja.2020.09.049 – ident: 1411_CR10 doi: 10.1038/sdata.2016.35 – volume: 8 year: 2018 ident: 1411_CR9 publication-title: Sci Rep doi: 10.1038/s41598-018-20062-4 – volume: 20 start-page: 1 year: 2020 ident: 1411_CR16 publication-title: BMC anesthesiology doi: 10.1186/s12871-020-01122-7 – volume: 127 start-page: 184 year: 2021 ident: 1411_CR13 publication-title: Br J Anaesth doi: 10.1016/j.bja.2021.03.011 – volume: 128 start-page: 92 year: 2018 ident: 1411_CR14 publication-title: Anesthesiology doi: 10.1097/ALN.0000000000001892 – volume: 126 start-page: 111 year: 2018 ident: 1411_CR2 publication-title: Anesth Analg doi: 10.1213/ane.0000000000002331 – volume: 9 year: 2019 ident: 1411_CR15 publication-title: Sci Rep doi: 10.1038/s41598-019-50391-x – volume: 9 start-page: e24762 year: 2021 ident: 1411_CR18 publication-title: JMIR Med Inform doi: 10.2196/24762 – volume: 28 start-page: 1207 year: 2021 ident: 1411_CR5 publication-title: J Am Med Inform Assoc doi: 10.1093/jamia/ocaa347 – volume: 17 start-page: 335 year: 2002 ident: 1411_CR8 publication-title: J Clin Monit Comput doi: 10.1023/a:1024294700397 – volume: 5 year: 2018 ident: 1411_CR11 publication-title: Sci Data doi: 10.1038/sdata.2018.178 |
| SSID | ssj0001340570 |
| Score | 2.2775557 |
| Snippet | In modern anesthesia, multiple medical devices are used simultaneously to comprehensively monitor real-time vital signs to optimize patient care and improve... Measurement(s) vital signs of patients during surgery • perioperative patient information Technology Type(s) Vital Signs Measurement • Electronic Medical... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 279 |
| SubjectTerms | 631/114/1305 692/308 Anesthesia Data Descriptor Databases, Factual Datasets Electronic health records Electronic medical records Humanities and Social Sciences Humans Interfaces Learning algorithms Machine Learning Medical equipment Medical records Monitoring, Physiologic - methods multidisciplinary Patients R&D Research & development Science Science (multidisciplinary) Vital Signs |
| SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagcOBSKK8GCjISBxC1mvjtE6JAxalCCNDeLMePshJky6bb34_H693V8uiFqz2O7Mwznsk3CD1PPnWBJUGMMopwHQ0xVAbiJMvuNPjsxHhpNqFOT_VkYj7WC7exllWubGIx1GHm4Y78iMq8LHtXpV-f_yTQNQqyq7WFxnV0A9pmg5yridrcsTAIR9r6r0zL9NGY_RXAj1KoR-BdR8SWPyqw_X-LNf8smfwtb1rc0cnt_z3IHbRbA1H8Zik5e-haHO6ivarqI35R8ahf3kOfvkJjkXfHh9hhQDcmCaCxcvSOSzUiAfTwH1BVgy-BEENJyIih9BRcJJ4OeFzMi4HFFcV1vI--nLz__PYDqa0YiOdCCBJylBGSYtp3iTIP8J4yRc9b57Iax95p06UIrUtopKn3rXA08l66pIIM0rAHaGeYDXEfYWd6bgKTXjHPdZImcSVjfpIPps8rGtStGGJ9xSmHdhnfbcmXM22XTLSZibYw0YoGvVqvOV-idFxJfQx8XlMCwnYZmM3PbFVYq53odC-U89zwNvY9Vz0Tvs_2OCTqVIMOVuy1Ve1Hu-Ftg56tp7PCQhbGDXG2WNIoIbMdbNDDpVCtd8LyOGCgNUhtidvWVrdnhum3AgqeP7t1y2iDDleCudnWv1_Fo6tP8RjdokVXJGn1Adq5mC_iE3TTX15Mx_nTomy_AOm2MLA priority: 102 providerName: ProQuest |
| Title | VitalDB, a high-fidelity multi-parameter vital signs database in surgical patients |
| URI | https://link.springer.com/article/10.1038/s41597-022-01411-5 https://www.ncbi.nlm.nih.gov/pubmed/35676300 https://www.proquest.com/docview/2674138978 https://www.proquest.com/docview/2674756794 https://pubmed.ncbi.nlm.nih.gov/PMC9178032 https://doaj.org/article/8a518b57ac4940ebb47b35cb763df2a7 |
| Volume | 9 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ : Directory of Open Access Journals [open access] customDbUrl: eissn: 2052-4463 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001340570 issn: 2052-4463 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2052-4463 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001340570 issn: 2052-4463 databaseCode: M~E dateStart: 20140101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5B4cAFUZ6BsjISBxC1msTvIwtbwYFVVAFaTpHj2OpKkKJNt0d-Ox4nu3R5Xrj4YI8jax6ecTz-BuBpcKFoWRDUKKMo195QU8qWWsmiO21ddGI8FZtQ87leLEx1qdQX5oQN8MAD4460FYVuhLKOG577puGqYcI10S7aUNr0jjxX5tJhKv1dYRiI5OMrmZzpoz56KgQeLTETgRcFFTueKAH2_y7K_DVZ8qcb0-SIjm_BzTGCJC-Hle_DFd_dhv3RRnvybASSfn4HTj5iRZDX00NiCcIS04CYVjHsJimNkCLs9xdMhyEXSEgwl6MnmDOKvo0sO9KvV2lnJCP8an8XPhzP3r96Q8caCtRxIQRtY3jQBsW0K0LJHOJyyuAdz62N9ucbq00RPNYcKX0ZGpcLW3reSBtUK1tp2D3Y6846_wCINQ03LZNOMcd1kCZwJX38kmtNE2dkUGz4WbsRYBzrXHyu00U30_UggzrKoE4yqEUGL7Zzvg7wGn-lnqKYtpQIjZ06osLUo8LU_1KYDA42Qq5He-3rUkaljLGb0hk82Q5HS8PrE9v5s_VAo4SMG1gG9wed2K6ExX4EL8tA7WjLzlJ3R7rlaULzjudlnbMyg8ONXv1Y1p9Z8fB_sOIR3CiTQUia6wPYO1-t_WO47i7Ol_1qAlfVQqVWT-DadDavTibJyiaYIFth-20WR6q376pP3wF04ypD |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqLRJcgPIMFDASSCBqNbEdPw4IUUrVVdvVChXUnoLj2LASZMumW8Sf4jficbK7Wh699cDVj8hJvplvYk--QeiJtz6rmM-JlloSrpwmmoqKGMECnVY2kBiPxSbkYKCOjvRwBf2c_QsDaZUznxgddTW2sEe-SUWYFthVqlcn3whUjYLT1VkJjRYWe-7H9_DJ1rzsb4f3-5TSnbeHb3ZJV1WAWJ7nOakCYVZeMmUzT5kFpUrhneWpMQGRrjRKZ95BFQ7qqC9tmhvqeCmMl5WoBIgvBZe_ygPY0x5aHfYPhseLXR0GAVDa_Z2TMrXZBIYEwVMKGRA8y0i-xICxUMDfots_kzR_O6mNBLhz7X97dNfR1S7Uxq9b21hDK66-gdY6Z9bgZ53i9vOb6N0HKJ2yvbWBDQb9ZuJB_Ct8n-CYb0lAH_0r5A3hMxiIIemlwZBcC0EAHtW4mU4iheBOp7a5hd5fyL3dRr16XLu7CBtdcl0xYSWzXHmhPZfChSvZSpdhRoKyGQAK2ymxQ0GQL0XMCGCqaEFTBNAUETRFnqAX8zknrQ7JuaO3AFfzkaAhHhvGk09F55IKZfJMlbk0lmueurLksmS5LQPjVJ4amaD1GZyKzrE1xQJLCXo87w4uCc6ZTO3G03aMzEXw9Am604J4vhIW2kHlLUFyCd5LS13uqUefo-y5zqRKGU3QxswQFsv696O4d_5dPEKXdw8P9ov9_mDvPrpCo50Kkqp11DudTN0DdMmenY6aycPO1DH6eNEm8gvybI_N |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1db9MwFL2aNoR4AcZnYICRQAIxq4nt2M4DQpSuYhqqqgnQ3jLHsaESpKNZh_hr_Dp8k7RV-djbHnhN7MhJzr3Hjk_OBXjirU9K7lOaqUxRoV1GMyZLaiQPdFraQGKiKTahRiN9dJSNN-Dn4l8YlFUucmKTqMupxW_kPSZDt8CuSvd8J4sYD4avTr5RrCCFO62LchotRA7cj-9h-Va_3B-Ed_2UseHe-zdvaVdhgFqRpiktA3mWXnFtE8-4RddK6Z0VsTEBna4wOku8w4oczDFf2Dg1zIlCGq9KWUo0Ygrpf0vxsOjZhK3-3mh8uPrCw3EyFHd_6sRc9-rAlmh-ylANIZKEpmts2BQN-NtM90_B5m-7tg0ZDq_9z4_xOlztpuDkdRsz27Dhqhuw3SW5mjzrnLif34TDj1hSZdDfJYagrzP1aAoW1i2k0WFS9E3_inoicoYNCYphaoKiW5wckElF6vmsoRbS-dfWt-DDhdzbbdisppW7C8RkhchKLq3iVmgvMy-UdOFKtsyK0COCZAGG3HYO7Vgo5EveKAW4zlsA5QFAeQOgPI3gxbLPSetPcm7rPmJs2RK9xZsD09mnvEtVuTZpootUGSsyEbuiEKrgqS0CE5WeGRXBzgJaeZfw6nyFqwgeL0-HVIX7T6Zy03nbRqUyMEAEd1pAL0fCw3F0f4tArUF9bajrZ6rJ58YOPcSejjmLYHcRFKth_ftR3Dv_Lh7B5RAX-bv90cF9uMKakJU01juweTqbuwdwyZ6dTurZwy7qCRxfdIT8AgUemGc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=VitalDB%2C+a+high-fidelity+multi-parameter+vital+signs+database+in+surgical+patients&rft.jtitle=Scientific+data&rft.au=Hyung-Chul+Lee&rft.au=Yoonsang+Park&rft.au=Soo+Bin+Yoon&rft.au=Seong+Mi+Yang&rft.date=2022-06-08&rft.pub=Nature+Portfolio&rft.eissn=2052-4463&rft.volume=9&rft.issue=1&rft.spage=1&rft.epage=9&rft_id=info:doi/10.1038%2Fs41597-022-01411-5&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_8a518b57ac4940ebb47b35cb763df2a7 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2052-4463&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2052-4463&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2052-4463&client=summon |