CON/SLK due date assignment and scheduling on a single machine with two agents
We consider scheduling problems involving two agents (agents A and B), each having a set of jobs that compete for the use of a common machine to process their respective jobs. The due dates of the A‐jobs are decision variables, which are determined by using the common (CON) or slack (SLK) due date a...
Uloženo v:
| Vydáno v: | Naval research logistics Ročník 63; číslo 5; s. 416 - 429 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Blackwell Publishing Ltd
01.08.2016
Wiley Subscription Services, Inc |
| Témata: | |
| ISSN: | 0894-069X, 1520-6750 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We consider scheduling problems involving two agents (agents A and B), each having a set of jobs that compete for the use of a common machine to process their respective jobs. The due dates of the A‐jobs are decision variables, which are determined by using the common (CON) or slack (SLK) due date assignment methods. Each agent wants to minimize a certain performance criterion depending on the completion times of its jobs only. Under each due date assignment method, the criterion of agent A is always the same, namely an integrated criterion consisting of the due date assignment cost and the weighted number of tardy jobs. Several different criteria are considered for agent B, including the maxima of regular functions (associated with each job), the total (weighted) completion time, and the weighted number of tardy jobs. The overall objective is to minimize the performance criterion of agent A, while keeping the objective value of agent B no greater than a given limit. We analyze the computational complexity, and devise polynomial or pseudo‐polynomial dynamic programming algorithms for the considered problems. We also convert, if viable, any of the devised pseudopolynomial dynamic programming algorithms into a fully polynomial‐time approximation scheme. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 416–429, 2016 |
|---|---|
| Bibliografie: | istex:5D7B9353E22470C0D78564BC76B9F8D0AB7C94B3 National Natural Science Foundation of China - No. 11561036; No. 71501024; No. 71301022 ark:/67375/WNG-DZBHQL2R-N ArticleID:NAV21700 Ministry of Transport of the People's Republic of China - No. 2014329225110 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 0894-069X 1520-6750 |
| DOI: | 10.1002/nav.21700 |