Diverse circovirus-like genome architectures revealed by environmental metagenomics

Single-stranded DNA (ssDNA) viruses with circular genomes are the smallest viruses known to infect eukaryotes. The present study identified 10 novel genomes similar to ssDNA circoviruses through data-mining of public viral metagenomes. The metagenomic libraries included samples from reclaimed water...

Full description

Saved in:
Bibliographic Details
Published in:Journal of general virology Vol. 90; no. Pt 10; p. 2418
Main Authors: Rosario, Karyna, Duffy, Siobain, Breitbart, Mya
Format: Journal Article
Language:English
Published: England 01.10.2009
Subjects:
ISSN:1465-2099, 1465-2099
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Single-stranded DNA (ssDNA) viruses with circular genomes are the smallest viruses known to infect eukaryotes. The present study identified 10 novel genomes similar to ssDNA circoviruses through data-mining of public viral metagenomes. The metagenomic libraries included samples from reclaimed water and three different marine environments (Chesapeake Bay, British Columbia coastal waters and Sargasso Sea). All the genomes have similarities to the replication (Rep) protein of circoviruses; however, only half have genomic features consistent with known circoviruses. Some of the genomes exhibit a mixture of genomic features associated with different families of ssDNA viruses (i.e. circoviruses, geminiviruses and parvoviruses). Unique genome architectures and phylogenetic analysis of the Rep protein suggest that these viruses belong to novel genera and/or families. Investigating the complex community of ssDNA viruses in the environment can lead to the discovery of divergent species and help elucidate evolutionary links between ssDNA viruses.
AbstractList Single-stranded DNA (ssDNA) viruses with circular genomes are the smallest viruses known to infect eukaryotes. The present study identified 10 novel genomes similar to ssDNA circoviruses through data-mining of public viral metagenomes. The metagenomic libraries included samples from reclaimed water and three different marine environments (Chesapeake Bay, British Columbia coastal waters and Sargasso Sea). All the genomes have similarities to the replication (Rep) protein of circoviruses; however, only half have genomic features consistent with known circoviruses. Some of the genomes exhibit a mixture of genomic features associated with different families of ssDNA viruses (i.e. circoviruses, geminiviruses and parvoviruses). Unique genome architectures and phylogenetic analysis of the Rep protein suggest that these viruses belong to novel genera and/or families. Investigating the complex community of ssDNA viruses in the environment can lead to the discovery of divergent species and help elucidate evolutionary links between ssDNA viruses.
Single-stranded DNA (ssDNA) viruses with circular genomes are the smallest viruses known to infect eukaryotes. The present study identified 10 novel genomes similar to ssDNA circoviruses through data-mining of public viral metagenomes. The metagenomic libraries included samples from reclaimed water and three different marine environments (Chesapeake Bay, British Columbia coastal waters and Sargasso Sea). All the genomes have similarities to the replication (Rep) protein of circoviruses; however, only half have genomic features consistent with known circoviruses. Some of the genomes exhibit a mixture of genomic features associated with different families of ssDNA viruses (i.e. circoviruses, geminiviruses and parvoviruses). Unique genome architectures and phylogenetic analysis of the Rep protein suggest that these viruses belong to novel genera and/or families. Investigating the complex community of ssDNA viruses in the environment can lead to the discovery of divergent species and help elucidate evolutionary links between ssDNA viruses.Single-stranded DNA (ssDNA) viruses with circular genomes are the smallest viruses known to infect eukaryotes. The present study identified 10 novel genomes similar to ssDNA circoviruses through data-mining of public viral metagenomes. The metagenomic libraries included samples from reclaimed water and three different marine environments (Chesapeake Bay, British Columbia coastal waters and Sargasso Sea). All the genomes have similarities to the replication (Rep) protein of circoviruses; however, only half have genomic features consistent with known circoviruses. Some of the genomes exhibit a mixture of genomic features associated with different families of ssDNA viruses (i.e. circoviruses, geminiviruses and parvoviruses). Unique genome architectures and phylogenetic analysis of the Rep protein suggest that these viruses belong to novel genera and/or families. Investigating the complex community of ssDNA viruses in the environment can lead to the discovery of divergent species and help elucidate evolutionary links between ssDNA viruses.
Author Rosario, Karyna
Breitbart, Mya
Duffy, Siobain
Author_xml – sequence: 1
  givenname: Karyna
  surname: Rosario
  fullname: Rosario, Karyna
  organization: College of Marine Science, University of South Florida, St Petersburg, FL 33701, USA
– sequence: 2
  givenname: Siobain
  surname: Duffy
  fullname: Duffy, Siobain
  organization: School of Environmental and Biological Sciences, Rutgers, New Brunswick, New Jersey, USA
– sequence: 3
  givenname: Mya
  surname: Breitbart
  fullname: Breitbart, Mya
  organization: College of Marine Science, University of South Florida, St Petersburg, FL 33701, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19570956$$D View this record in MEDLINE/PubMed
BookMark eNpNkD1PwzAYhC1URD9gZUSe2FJs89qOR1TKh1SJAZgjx3kDhsQpdlKp_54IisR0J91zN9ycTEIXkJBzzpacGXO183HJlowLI2XGjsiMg5KZGKPJPz8l85Q-GOMAUp-QKTdSMyPVjDzf-h3GhNT56LpxbUhZ4z-RvmHoWqQ2unffo-uHiIlG3KFtsKLlnmIY6S60GHrb0BZ7-1PxLp2S49o2Cc8OuiCvd-uX1UO2ebp_XN1sMgcS-iwXSkmnK0AOzFY15OUoqsqNRn7tlMmdADAApSpt7SzqvOayypV2oi4VigW5_N3dxu5rwNQXrU8Om8YG7IZUKK1gpNUIXhzAoWyxKrbRtzbui78bxDdPCWMw
CitedBy_id crossref_primary_10_1128_AEM_01705_12
crossref_primary_10_3390_life12122048
crossref_primary_10_1073_pnas_1417243111
crossref_primary_10_1111_1462_2920_12184
crossref_primary_10_1016_j_virusres_2024_199428
crossref_primary_10_1016_j_meegid_2014_01_013
crossref_primary_10_1099_vir_0_060780_0
crossref_primary_10_1371_journal_pone_0060595
crossref_primary_10_1093_ismeco_ycae109
crossref_primary_10_1128_AEM_00202_11
crossref_primary_10_3389_fmicb_2014_00355
crossref_primary_10_1146_annurev_virology_031413_085540
crossref_primary_10_1371_journal_pone_0020579
crossref_primary_10_7717_peerj_5761
crossref_primary_10_1146_annurev_biodatasci_012221_095114
crossref_primary_10_1016_j_ygeno_2019_11_011
crossref_primary_10_7717_peerj_2777
crossref_primary_10_1038_nrmicro3404
crossref_primary_10_1111_mec_13321
crossref_primary_10_1073_pnas_1216595110
crossref_primary_10_1128_AEM_03878_14
crossref_primary_10_1016_j_jglr_2013_06_006
crossref_primary_10_1128_JVI_06671_11
crossref_primary_10_1128_mSystems_00125_16
crossref_primary_10_1128_JVI_00607_10
crossref_primary_10_3389_fmars_2017_00441
crossref_primary_10_1016_j_resmic_2015_07_003
crossref_primary_10_1146_annurev_genet_110711_155600
crossref_primary_10_2478_fv_2019_0005
crossref_primary_10_3390_v11060484
crossref_primary_10_1186_1471_2148_11_276
crossref_primary_10_1093_ismeco_ycae065
crossref_primary_10_1128_spectrum_00780_22
crossref_primary_10_1146_annurev_marine_120709_142805
crossref_primary_10_1007_s00705_015_2358_6
crossref_primary_10_1128_JVI_00293_12
crossref_primary_10_1111_tbed_13355
crossref_primary_10_3389_fmicb_2015_01427
crossref_primary_10_1007_s00705_020_04819_9
crossref_primary_10_1099_vir_0_070029_0
crossref_primary_10_1186_1471_2148_11_185
crossref_primary_10_1007_s11262_013_1003_2
crossref_primary_10_1016_j_meegid_2015_01_001
crossref_primary_10_1016_j_virusres_2011_11_021
crossref_primary_10_1128_JVI_00501_10
crossref_primary_10_1371_journal_pone_0169841
crossref_primary_10_1007_s00705_012_1391_y
crossref_primary_10_1016_j_virol_2015_02_039
crossref_primary_10_1186_1745_6150_7_13
crossref_primary_10_1128_JVI_02109_09
crossref_primary_10_1016_j_mimet_2012_11_016
crossref_primary_10_1128_JVI_06373_11
crossref_primary_10_3390_pathogens12040601
crossref_primary_10_1099_jgv_0_001293
crossref_primary_10_3390_v3091699
crossref_primary_10_1016_j_rvsc_2017_01_014
crossref_primary_10_1007_s00705_012_1291_1
crossref_primary_10_1371_journal_pcbi_1000593
crossref_primary_10_1371_journal_pone_0040418
crossref_primary_10_1016_j_coviro_2011_06_004
crossref_primary_10_1186_1471_2105_15_76
crossref_primary_10_3389_fmicb_2018_01223
crossref_primary_10_3390_v10090469
crossref_primary_10_1111_fwb_12938
crossref_primary_10_1002_bies_201200083
crossref_primary_10_1007_s13337_019_00519_4
crossref_primary_10_1038_srep03337
crossref_primary_10_1007_s00705_010_0674_4
crossref_primary_10_1038_ismej_2013_110
crossref_primary_10_1016_j_jembe_2011_07_030
crossref_primary_10_1371_journal_pone_0057271
crossref_primary_10_1016_j_trsl_2012_03_006
crossref_primary_10_1128_JCM_01062_09
crossref_primary_10_1111_j_1462_2920_2009_01964_x
crossref_primary_10_1371_journal_pone_0030875
crossref_primary_10_1007_s00705_021_05202_y
crossref_primary_10_1080_22221751_2019_1640587
crossref_primary_10_1128_JVI_00791_12
crossref_primary_10_1186_s40168_019_0675_9
crossref_primary_10_1016_j_meegid_2015_02_010
crossref_primary_10_3389_fmicb_2015_00199
crossref_primary_10_1007_s00705_013_1606_x
crossref_primary_10_1016_j_meegid_2016_05_008
crossref_primary_10_1590_0074_02760160312
crossref_primary_10_3390_v10040187
crossref_primary_10_1016_j_coviro_2011_05_022
crossref_primary_10_1007_s00705_013_1674_y
crossref_primary_10_1128_JVI_05217_11
crossref_primary_10_1111_j_1462_2920_2011_02614_x
crossref_primary_10_3389_fmicb_2018_00075
crossref_primary_10_1016_j_jviromet_2019_01_008
crossref_primary_10_3390_ani12020135
crossref_primary_10_1111_j_1462_2920_2011_02633_x
crossref_primary_10_1007_s11262_018_1599_3
crossref_primary_10_1038_srep02468
crossref_primary_10_1128_JVI_02323_13
crossref_primary_10_1016_j_virusres_2015_07_005
crossref_primary_10_1016_j_jglr_2020_01_011
crossref_primary_10_1016_j_virusres_2013_09_018
crossref_primary_10_1371_journal_ppat_1002218
crossref_primary_10_1128_AEM_00204_10
crossref_primary_10_3390_v9120361
crossref_primary_10_1371_journal_pone_0033641
crossref_primary_10_1186_s12985_018_0974_y
crossref_primary_10_1186_s40168_016_0166_1
crossref_primary_10_1128_mSphere_00359_16
crossref_primary_10_1186_s13071_017_2108_6
crossref_primary_10_1038_ncomms5298
crossref_primary_10_1038_ncomms3700
crossref_primary_10_1016_j_coviro_2011_05_003
crossref_primary_10_1038_ismej_2010_188
crossref_primary_10_1111_1462_2920_15805
crossref_primary_10_1371_journal_pntd_0001485
crossref_primary_10_1007_s00248_013_0325_x
crossref_primary_10_1016_j_meegid_2016_02_009
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1099/vir.0.012955-0
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Biology
EISSN 1465-2099
ExternalDocumentID 19570956
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.55
.GJ
186
18M
2WC
39C
3O-
4.4
53G
5GY
5RE
AAJMC
ABDNZ
ACBTR
ACGFO
ACPEE
ACYGS
ADBBV
ADCDP
ADCOW
AEILP
AENEX
AFFNX
AGCDD
AI.
AJKYU
ALMA_UNASSIGNED_HOLDINGS
BAWUL
C1A
CGR
CJ0
CS3
CUY
CVF
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
FRP
GX1
H13
IH2
K-O
L7B
NPM
OHT
OK1
P2P
RGM
TR2
VH1
W8F
WH7
WHG
WOQ
X7M
Y6R
YKV
YSK
ZGI
~KM
7X8
ID FETCH-LOGICAL-c454t-82665c7d4e140adf48b0ad6d897e13c698c244944b6bafcae78f15d867c2fb6e2
IEDL.DBID 7X8
ISICitedReferencesCount 137
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000270499700012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1465-2099
IngestDate Fri Jul 11 17:01:49 EDT 2025
Thu Apr 03 07:02:28 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue Pt 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c454t-82665c7d4e140adf48b0ad6d897e13c698c244944b6bafcae78f15d867c2fb6e2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 19570956
PQID 67648676
PQPubID 23479
ParticipantIDs proquest_miscellaneous_67648676
pubmed_primary_19570956
PublicationCentury 2000
PublicationDate 2009-10-01
PublicationDateYYYYMMDD 2009-10-01
PublicationDate_xml – month: 10
  year: 2009
  text: 2009-10-01
  day: 01
PublicationDecade 2000
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of general virology
PublicationTitleAlternate J Gen Virol
PublicationYear 2009
SSID ssj0014457
Score 2.345052
Snippet Single-stranded DNA (ssDNA) viruses with circular genomes are the smallest viruses known to infect eukaryotes. The present study identified 10 novel genomes...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 2418
SubjectTerms Amino Acid Sequence
Circovirus - genetics
Environmental Microbiology
Genome, Viral
Oceans and Seas
Phylogeny
Seawater - virology
Viral Proteins - chemistry
Viral Proteins - genetics
Water Microbiology
Title Diverse circovirus-like genome architectures revealed by environmental metagenomics
URI https://www.ncbi.nlm.nih.gov/pubmed/19570956
https://www.proquest.com/docview/67648676
Volume 90
WOSCitedRecordID wos000270499700012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6qVfDi-1GfOXjd2iT7CggiavGgpaBCb2F3s4GgTWrTFvrvnd002ot48JJAYMNmdjIzu9_MNwhdahoqoRXD3PgpJkpQrAJDMUlE1JEOjHKU-U-81xODQdRvoOu6FsamVdY20RnqpND2jPyKcWbJ4djN6BPbnlEWW1000FhBzRACGZvQxQc_GAIhjucTTAHFtkD0m7Ixuppl43anbc9gKMWd34NL52S6W_-b3jbaXASX3m2lDTuoYfJdtF61m5zvoZd7l4RhPJ2NdQGzm5b4I3s3niVqHRpvGVQoPcvtBN4j8dTcWyqHg_cPzUS6IZku99Fb9-H17hEvmipgTSiZYNhOMKp5QgxsrWSSEqHgxmBpYLVCzSKhweNHhCimZKql4SL1aQLfpoNUMRMcoNW8yM0R8mjI4IGQgYG4jyoeCS51oDnzDfO1DFvoopZVDEprkQiZm2JaxrW0WuiwEnc8qrg1Yj-i3HIjHv859gRtOGTHJdadomYKv6s5Q2t6NsnK8bnTBbj2-s9fZj_AgQ
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diverse+circovirus-like+genome+architectures+revealed+by+environmental+metagenomics&rft.jtitle=Journal+of+general+virology&rft.au=Rosario%2C+Karyna&rft.au=Duffy%2C+Siobain&rft.au=Breitbart%2C+Mya&rft.date=2009-10-01&rft.eissn=1465-2099&rft.volume=90&rft.issue=Pt+10&rft.spage=2418&rft_id=info:doi/10.1099%2Fvir.0.012955-0&rft_id=info%3Apmid%2F19570956&rft_id=info%3Apmid%2F19570956&rft.externalDocID=19570956
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1465-2099&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1465-2099&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1465-2099&client=summon