Stability of Filled PDMS Pervaporation Membranes in Bio-Ethanol Recovery from a Real Fermentation Broth

Mixed matrix membranes (MMMs) have shown great potential in pervaporation (PV). As for many novel membrane materials however, lab-scale testing often involves synthetic feed solutions composed of mixed pure components, overlooking the possibly complex interactions and effects caused by the numerous...

Full description

Saved in:
Bibliographic Details
Published in:Membranes (Basel) Vol. 13; no. 11; p. 863
Main Authors: Van Goethem, Cédric, Naik, Parimal V., Van de Velde, Miet, Van Durme, Jim, Verplaetse, Alex, Vankelecom, Ivo F. J.
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.11.2023
Subjects:
ISSN:2077-0375, 2077-0375
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Mixed matrix membranes (MMMs) have shown great potential in pervaporation (PV). As for many novel membrane materials however, lab-scale testing often involves synthetic feed solutions composed of mixed pure components, overlooking the possibly complex interactions and effects caused by the numerous other components in a real PV feed. This work studies the performance of MMMs with two different types of fillers, a core-shell material consisting of ZIF-8 coated on mesoporous silica and a hollow sphere of silicalite-1, in the PV of a real fermented wheat/hay straw hydrolysate broth for the production of bio-ethanol. All membranes, including a reference unfilled PDMS, show a declining permeability over time. Interestingly, the unfilled PDMS membrane maintains a stable separation factor, whereas the filled PDMS membranes rapidly lose selectivity to levels below that of the reference PDMS membrane. A membrane autopsy using XRD and SEM-EDX revealed an almost complete degradation of the crystalline ZIF-8 in the MMMs. Reference experiments with ZIF-8 nanoparticles in the fermentation broth demonstrated the influence of the broth on the ZIF-8 particles. However, the observed effects from the membrane autopsy could not exactly be replicated, likely due to distinct differences in conditions between the in-situ pervaporation process and the ex-situ reference experiments. These findings raise significant questions regarding the potential applicability of MOF-filled MMMs in real-feed pervaporation processes and, potentially, in harsh condition membrane separations in general. This study clearly confirms the importance of testing membranes in realistic conditions.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2077-0375
2077-0375
DOI:10.3390/membranes13110863