Exact and approximate methods for a one-dimensional minimax bin-packing problem
One-dimensional bin-packing problems require the assignment of a collection of items to bins with the goal of optimizing some criterion related to the number of bins used or the ‘weights’ of the items assigned to the bins. In many instances, the number of bins is fixed and the goal is to assign the...
Uloženo v:
| Vydáno v: | Annals of operations research Ročník 206; číslo 1; s. 611 - 626 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Boston
Springer US
01.07.2013
Springer Springer Nature B.V |
| Témata: | |
| ISSN: | 0254-5330, 1572-9338 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | One-dimensional bin-packing problems require the assignment of a collection of items to bins with the goal of optimizing some criterion related to the number of bins used or the ‘weights’ of the items assigned to the bins. In many instances, the number of bins is fixed and the goal is to assign the items such that the sums of the item weights for each bin are approximately equal. Among the possible applications of one-dimensional bin-packing in the field of psychology are the assignment of subjects to treatments and the allocation of students to groups. An especially important application in the psychometric literature pertains to splitting of a set of test items to create distinct subtests, each containing the same number of items, such that the maximum sum of item weights across all bins is minimized. In this context, the weights typically correspond to item statistics derived from difficulty and discrimination indices. We present a mixed zero-one integer linear programming (MZOILP) formulation of this one-dimensional minimax bin-packing problem and develop an approximate procedure for its solution that is based on the simulated annealing algorithm. In two comparisons that focused on 34 practically-sized test problems (up to 6000 items and 300 bins), the simulated annealing heuristic generally provided better solutions than were obtained when using a commercial mathematical programming software package to solve the MZOILP formulation directly. |
|---|---|
| Bibliografie: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 0254-5330 1572-9338 |
| DOI: | 10.1007/s10479-012-1175-5 |