Optimality conditions and Mond–Weir duality for a class of differentiable semi-infinite multiobjective programming problems with vanishing constraints

In this paper, the class of differentiable semi-infinite multiobjective programming problems with vanishing constraints is considered. Both Karush–Kuhn–Tucker necessary optimality conditions and, under appropriate invexity hypotheses, sufficient optimality conditions are proved for such nonconvex sm...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:4OR Ročník 20; číslo 3; s. 417 - 442
Hlavný autor: Antczak, Tadeusz
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2022
Springer Nature B.V
Predmet:
ISSN:1619-4500, 1614-2411
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper, the class of differentiable semi-infinite multiobjective programming problems with vanishing constraints is considered. Both Karush–Kuhn–Tucker necessary optimality conditions and, under appropriate invexity hypotheses, sufficient optimality conditions are proved for such nonconvex smooth vector optimization problems. Further, vector duals in the sense of Mond–Weir are defined for the considered differentiable semi-infinite multiobjective programming problems with vanishing constraints and several duality results are established also under invexity hypotheses.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1619-4500
1614-2411
DOI:10.1007/s10288-021-00482-1