Using parallel & distributed computing for real-time solving of vehicle routing problems with stochastic demands

This paper focuses on the Vehicle Routing Problem with Stochastic Demands (VRPSD) and discusses how Parallel and Distributed Computing Systems can be employed to efficiently solve the VRPSD. Our approach deals with uncertainty in the customer demands by considering safety stocks, i.e. when designing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of operations research Jg. 207; H. 1; S. 43 - 65
Hauptverfasser: Juan, Angel A., Faulin, Javier, Jorba, Josep, Caceres, Jose, Marquès, Joan Manuel
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Boston Springer US 01.08.2013
Springer
Springer Nature B.V
Schlagworte:
ISSN:0254-5330, 1572-9338
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This paper focuses on the Vehicle Routing Problem with Stochastic Demands (VRPSD) and discusses how Parallel and Distributed Computing Systems can be employed to efficiently solve the VRPSD. Our approach deals with uncertainty in the customer demands by considering safety stocks, i.e. when designing the routes, part of the vehicle capacity is reserved to deal with potential emergency situations caused by unexpected demands. Thus, for a given VRPSD instance, our algorithm considers different levels of safety stocks. For each of these levels, a different scenario is defined. Then, the algorithm solves each scenario by integrating Monte Carlo simulation inside a heuristic-randomization process. This way, expected variable costs due to route failures can be naturally estimated even when customers’ demands follow a non-normal probability distribution. Use of parallelization strategies is then considered to run multiple instances of the algorithm in a concurrent way. The resulting concurrent solutions are then compared and the one with the minimum total costs is selected. Two numerical experiments allow analyzing the algorithm’s performance under different parallelization schemas.
AbstractList This paper focuses on the Vehicle Routing Problem with Stochastic Demands (VRPSD) and discusses how Parallel and Distributed Computing Systems can be employed to efficiently solve the VRPSD. Our approach deals with uncertainty in the customer demands by considering safety stocks, i.e. when designing the routes, part of the vehicle capacity is reserved to deal with potential emergency situations caused by unexpected demands. Thus, for a given VRPSD instance, our algorithm considers different levels of safety stocks. For each of these levels, a different scenario is defined. Then, the algorithm solves each scenario by integrating Monte Carlo simulation inside a heuristic-randomization process. This way, expected variable costs due to route failures can be naturally estimated even when customers' demands follow a non-normal probability distribution. Use of parallelization strategies is then considered to run multiple instances of the algorithm in a concurrent way. The resulting concurrent solutions are then compared and the one with the minimum total costs is selected. Two numerical experiments allow analyzing the algorithm's performance under different parallelization schemas.
This paper focuses on the Vehicle Routing Problem with Stochastic Demands (VRPSD) and discusses how Parallel and Distributed Computing Systems can be employed to efficiently solve the VRPSD. Our approach deals with uncertainty in the customer demands by considering safety stocks, i.e. when designing the routes, part of the vehicle capacity is reserved to deal with potential emergency situations caused by unexpected demands. Thus, for a given VRPSD instance, our algorithm considers different levels of safety stocks. For each of these levels, a different scenario is defined. Then, the algorithm solves each scenario by integrating Monte Carlo simulation inside a heuristic-randomization process. This way, expected variable costs due to route failures can be naturally estimated even when customers' demands follow a non-normal probability distribution. Use of parallelization strategies is then considered to run multiple instances of the algorithm in a concurrent way. The resulting concurrent solutions are then compared and the one with the minimum total costs is selected. Two numerical experiments allow analyzing the algorithm's performance under different parallelization schemas.[PUBLICATION ABSTRACT]
This paper focuses on the Vehicle Routing Problem with Stochastic Demands (VRPSD) and discusses how Parallel and Distributed Computing Systems can be employed to efficiently solve the VRPSD. Our approach deals with uncertainty in the customer demands by considering safety stocks, i.e. when designing the routes, part of the vehicle capacity is reserved to deal with potential emergency situations caused by unexpected demands. Thus, for a given VRPSD instance, our algorithm considers different levels of safety stocks. For each of these levels, a different scenario is defined. Then, the algorithm solves each scenario by integrating Monte Carlo simulation inside a heuristic-randomization process. This way, expected variable costs due to route failures can be naturally estimated even when customers' demands follow a non-normal probability distribution. Use of parallelization strategies is then considered to run multiple instances of the algorithm in a concurrent way. The resulting concurrent solutions are then compared and the one with the minimum total costs is selected. Two numerical experiments allow analyzing the algorithm's performance under different parallelization schemas. Keywords Vehicle routing problem with stochastic demands * Parallel and distributed computing * Monte Carlo simulation * Probabilistic algorithms * Heuristics
Audience Academic
Author Jorba, Josep
Marquès, Joan Manuel
Juan, Angel A.
Caceres, Jose
Faulin, Javier
Author_xml – sequence: 1
  givenname: Angel A.
  surname: Juan
  fullname: Juan, Angel A.
  organization: Department of Computer Science, Multimedia, and Telecommunication, Open University of Catalonia
– sequence: 2
  givenname: Javier
  surname: Faulin
  fullname: Faulin, Javier
  email: javier.faulin@unavarra.es
  organization: Department of Statistics and OR, Public University of Navarre
– sequence: 3
  givenname: Josep
  surname: Jorba
  fullname: Jorba, Josep
  organization: Department of Computer Science, Multimedia, and Telecommunication, Open University of Catalonia
– sequence: 4
  givenname: Jose
  surname: Caceres
  fullname: Caceres, Jose
  organization: Department of Computer Science, Multimedia, and Telecommunication, Open University of Catalonia
– sequence: 5
  givenname: Joan Manuel
  surname: Marquès
  fullname: Marquès, Joan Manuel
  organization: Department of Computer Science, Multimedia, and Telecommunication, Open University of Catalonia
BookMark eNp9klFr1TAUgINM8O7qD_AtIIgPdiZN0_Q-jqFTGPjinkOanvZmpE3NSSfbrzelA7ehEkggfN_JyTnnlJxMYQJC3nJ2xhlTn5CzSh0KxnnBDrwp7l-QHZeqLA5CNCdkx0pZFVII9oqcIt4wlslG7sh8jW4a6Gyi8R48fU87hym6dknQURvGeUkr0IdIIxhfJDcCxeBv19vQ01s4OuuBxrCBcwythxHpL5eOFFOwR4PJWdrBaKYOX5OXvfEIbx7OPbn-8vnHxdfi6vvlt4vzq8JWUqRCKSlaLroOuGk6Jm2tBGsUyEqY0hhgNai67YS0UtS2rQVTsuOVEdaUwJpa7MmHLW5O6OcCmPTo0IL3ZoKwoOZVeWhqLnLAPXn3DL0JS5xydpnKlVJ1xcQfajAetJv6kKKxa1B9LipRylx2lqmzv1B55e87m3vWu3z_RPj4SGiX3A7AvKEbjgkHsyA-xfmG2xgQI_R6jm408U5zptdJ0Nsk6NxfvU6Cvs-OeuZYl0xyYcq5Of9fs9xMzK9MA8RHlfmn9BvS5sls
CitedBy_id crossref_primary_10_1057_ori_2013_2
crossref_primary_10_1080_17477778_2019_1680262
crossref_primary_10_1016_j_trpro_2020_03_095
crossref_primary_10_1109_COMST_2021_3091684
crossref_primary_10_1057_jors_2015_48
crossref_primary_10_1016_j_cie_2022_108837
crossref_primary_10_1057_s41273_016_0002_4
crossref_primary_10_1016_j_ejor_2019_11_033
crossref_primary_10_1111_itor_12433
crossref_primary_10_1111_itor_12796
crossref_primary_10_1080_01605682_2018_1494527
crossref_primary_10_1111_itor_12776
crossref_primary_10_1016_j_ejor_2016_02_045
crossref_primary_10_1007_s10479_016_2260_y
crossref_primary_10_1016_j_cie_2017_06_019
crossref_primary_10_1057_jos_2014_25
crossref_primary_10_1109_TEM_2023_3247565
crossref_primary_10_1016_j_orp_2015_03_001
crossref_primary_10_1007_s10479_021_04222_w
crossref_primary_10_1080_00207543_2015_1043403
crossref_primary_10_1186_s40537_018_0134_7
crossref_primary_10_1016_j_iswa_2023_200225
crossref_primary_10_1287_ijoc_2019_0906
crossref_primary_10_3390_logistics6030042
crossref_primary_10_3390_en9020086
crossref_primary_10_1007_s13748_017_0122_8
crossref_primary_10_1016_j_eswa_2015_10_012
crossref_primary_10_1111_itor_12560
crossref_primary_10_1007_s10479_021_04142_9
crossref_primary_10_1108_K_10_2024_2935
crossref_primary_10_1111_itor_12101
crossref_primary_10_1007_s10462_022_10228_y
crossref_primary_10_1007_s10898_025_01531_3
crossref_primary_10_1016_j_simpat_2018_09_004
crossref_primary_10_1007_s10479_018_2777_3
crossref_primary_10_1016_j_simpat_2018_04_005
crossref_primary_10_1016_j_cie_2018_06_036
crossref_primary_10_1016_j_ejor_2017_04_046
crossref_primary_10_1177_0037549720968891
crossref_primary_10_1007_s00500_014_1257_1
crossref_primary_10_1016_j_tre_2015_11_004
crossref_primary_10_1088_1757_899X_277_1_012048
Cites_doi 10.1109/GRID.2004.14
10.1016/S0305-0548(03)00163-1
10.1016/j.cie.2009.05.009
10.1016/S0167-8191(00)00102-2
10.1145/1721654.1721672
10.1016/0377-2217(92)90323-2
10.1109/WSC.2005.1574301
10.1080/07408170701745378
10.1016/j.cor.2009.12.005
10.1007/3-540-45492-6_47
10.1007/s11047-008-9098-4
10.1057/jors.2010.29
10.1016/j.cor.2009.10.011
10.1016/S0377-2217(02)00915-3
10.1016/j.trc.2010.09.007
10.1287/opre.1040.0124
10.1057/palgrave.jors.2602500
10.1287/opre.44.3.469
10.1287/opre.12.4.568
10.1002/nav.20261
10.1109/MIC.2007.43
10.1016/j.ejor.2009.06.003
10.1016/j.ejor.2005.12.029
10.1016/0377-2217(95)00050-X
10.1023/A:1021814225969
10.1016/j.ejor.2008.03.023
10.1007/s10852-005-9033-y
10.1016/j.cor.2003.11.023
ContentType Journal Article
Copyright Springer Science+Business Media, LLC 2011
COPYRIGHT 2013 Springer
Springer Science+Business Media New York 2013
Copyright_xml – notice: Springer Science+Business Media, LLC 2011
– notice: COPYRIGHT 2013 Springer
– notice: Springer Science+Business Media New York 2013
DBID AAYXX
CITATION
N95
3V.
7TA
7TB
7WY
7WZ
7XB
87Z
88I
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FR3
FRNLG
F~G
GNUQQ
HCIFZ
JG9
JQ2
K60
K6~
K7-
KR7
L.-
L6V
M0C
M0N
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
7SC
L7M
L~C
L~D
DOI 10.1007/s10479-011-0918-z
DatabaseName CrossRef
Gale Business: Insights
ProQuest Central (Corporate)
Materials Business File
Mechanical & Transportation Engineering Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ABI/INFORM Global
Computing Database
Science Database (subscription)
Engineering Database
AAdvanced Technologies & Aerospace Database (subscription)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Databases
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ProQuest Central Basic
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Materials Research Database
ProQuest Business Collection (Alumni Edition)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
Materials Business File
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
ABI/INFORM Complete (Alumni Edition)
Civil Engineering Abstracts
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database
Materials Research Database



Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Business
EISSN 1572-9338
EndPage 65
ExternalDocumentID 3019993511
A343259180
10_1007_s10479_011_0918_z
Genre Feature
GeographicLocations Spain
GeographicLocations_xml – name: Spain
GroupedDBID -4X
-57
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
7WY
88I
8AO
8FE
8FG
8FL
8TC
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYQZM
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBO
EBS
EBU
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IEA
IHE
IJ-
IKXTQ
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M2P
M4Y
M7S
MA-
N2Q
N95
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9M
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZD
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SBE
SCF
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
Z8N
Z8U
Z92
ZL0
ZMTXR
ZYFGU
~8M
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
ICD
PHGZM
PHGZT
PQGLB
7TA
7TB
7XB
8AL
8FD
8FK
FR3
JG9
JQ2
KR7
L.-
PKEHL
PQEST
PQUKI
PRINS
Q9U
7SC
L7M
L~C
L~D
PUEGO
ID FETCH-LOGICAL-c453t-7753b13dde1a8d05c673087e543a2aae06e76bd35c536cb63075d14a3ca2e0863
IEDL.DBID RSV
ISICitedReferencesCount 61
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000321869500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0254-5330
IngestDate Fri Sep 05 11:18:18 EDT 2025
Wed Nov 05 14:20:43 EST 2025
Sat Nov 29 13:24:22 EST 2025
Sun Nov 23 08:49:37 EST 2025
Sat Nov 29 08:28:34 EST 2025
Sat Nov 29 02:36:28 EST 2025
Tue Nov 18 22:00:55 EST 2025
Fri Feb 21 02:37:01 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Probabilistic algorithms
Parallel and distributed computing
Vehicle routing problem with stochastic demands
Heuristics
Monte Carlo simulation
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c453t-7753b13dde1a8d05c673087e543a2aae06e76bd35c536cb63075d14a3ca2e0863
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 1400076403
PQPubID 25585
PageCount 23
ParticipantIDs proquest_miscellaneous_1429861354
proquest_journals_1400076403
gale_infotracmisc_A343259180
gale_infotracacademiconefile_A343259180
gale_businessinsightsgauss_A343259180
crossref_primary_10_1007_s10479_011_0918_z
crossref_citationtrail_10_1007_s10479_011_0918_z
springer_journals_10_1007_s10479_011_0918_z
PublicationCentury 2000
PublicationDate 20130800
2013-8-00
20130801
PublicationDateYYYYMMDD 2013-08-01
PublicationDate_xml – month: 8
  year: 2013
  text: 20130800
PublicationDecade 2010
PublicationPlace Boston
PublicationPlace_xml – name: Boston
– name: New York
PublicationTitle Annals of operations research
PublicationTitleAbbrev Ann Oper Res
PublicationYear 2013
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References BastianC.Rinnooy KanA.The stochastic vehicle routing problem revisitedEuropean Journal of Operational Research19925640741210.1016/0377-2217(92)90323-2
Van HentenryckP.BentR.Online stochastic combinatorial optimization2010BostonMIT Press
Jézéquel, A. (1985). Probabilistic vehicle routing problems. MSc dissertation. Department of Civil Engineering. Massachussets Institute of Technology, Cambridge, MA.
BergerJ.BarkaouiM.A parallel hybrid genetic algorithm for the vehicle routing problem with time windowsComputers & Operations Research200431122037205310.1016/S0305-0548(03)00163-1
WalkerE.Benchmarking Amazon EC2 for high-performance scientific computingLOGIN20083351823
VerweijB.AhmedS.KleywegtA.NemhauserG.ShapiroA.The sample average approximation method applied to stochastic routing problems: a computational studyComputational Optimization and Applications20032428933310.1023/A:1021814225969
LaporteG.What you should know about the Vehicle Routing ProblemNaval Research Logistics20075481181910.1002/nav.20261
MarquesJ. M.VilajosanaX.DaradoumisT.NavarroL.LaCOLLA: middleware for self-sufficient online collaborationIEEE Internet Computing2007112566410.1109/MIC.2007.43
NovoaC.StorerR.An approximate dynamic programming approach for the vehicle routing problem with stochastic demandsEuropean Journal of Operational Research200919650951510.1016/j.ejor.2008.03.023
JuanA.FaulinJ.GrasmanS.RieraD.MarullJ.MendezC.Using safety stocks and simulation to solve the vehicle routing problem with stochastic demandsTransportation Research Part C201119575176510.1016/j.trc.2010.09.007
BianchiL.BirattariM.ChiarandiniM.ManfrinM.MastrolilliM.PaqueteL.Rossi-DoriaO.SchiavinottoT.Hybrid metaheuristics for the vehicle routing problem with stochastic demandsJournal of Mathematical Modelling and Algorithms200659111010.1007/s10852-005-9033-y
MitraS.A parallel clustering technique for the vehicle routing problem with split deliveries and pickupsJournal of the Operational Research Society200859111532154610.1057/palgrave.jors.2602500
KirkD.HwuW.Programming massively parallel processors. A hands-on approach2010San MateoMorgan Kaufmann
AndersonD.BOINC: a system for public-resource computing and storageProceedings of the 5th IEEE/ACM international workshop on grid computing200441010.1109/GRID.2004.14
BalaprakashP.BirattariM.StützleT.DorigoM.Estimation-based metaheuristics for the probabilitic travelling salesman problemComputers and Operations Research2010371939195110.1016/j.cor.2009.12.005
ClarkeG.WrightJ.Scheduling of vehicles from a central depot to a number of delivering pointsOperations Research19641256858110.1287/opre.12.4.568
CrainicT.GoldenB.RaghavanS.WasilE.Parallel solution methods for vehicle routing problemsThe vehicle routing problem—latest advances and new challenges2008BerlinSpringer
EksiogluB.VolkanA.ReismanA.The vehicle routing problem: a taxonomic reviewComputers & Industrial Engineering20095741472148310.1016/j.cie.2009.05.009
Armbrust, M., Fox, A., Griffith, R., Joseph, A., Katz, R., Konwinski, A., Lee, G., Patterson, D., Rabkin, A., Stoica, I., & Zaharia, M. (2009). Above the clouds: a Berkeley view of cloud computing. Technical Report No. UCB/EECS-2009-28. Available at: http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html. Last access 15 September 2010.
GoldenB.RaghavanS.WasilE.The vehicle routing problem: latest advances and new challenges2008New YorkSpringer
HemmelmayrV.DoernerK.HartlR.SavelsberghM.Vendor managed inventory for environments with stochastic product usageEuropean Journal of Operational Research201020268669510.1016/j.ejor.2009.06.003
BentR.Van HentenryckP.Waiting and relocation strategies in online stochastic vehicle routingProceedings of the twentieth international joint conference on artificial intelligence200718161821
BouthillierA.CrainicT.A cooperative parallel metaheuristic for the vehicle routing problem with time windowsComputers and Operations Research20053271685170810.1016/j.cor.2003.11.023
GhianiG.GuerrieroF.LaporteG.Real-time vehicle routing: Solution concepts, algorithms and parallel computing strategiesEuropean Journal of Operational Research2003151111110.1016/S0377-2217(02)00915-3
Amazon (2010). High performance computing using Amazon EC2. Amazon’s technical report. Available at: http://aws.amazon.com/ec2/hpc-applications/. Last access 19 March 2011.
TanK.CheongC.GohC.Solving multiobjective vehicle routing problem with stochastic demand via evolutionary computationEuropean Journal of Operational Research200717781383910.1016/j.ejor.2005.12.029
BentR.Van HentenryckP.Scenario-based planning for partially dynamic vehicle routing with stochastic customersOperations Research20045261526156310.1287/opre.1040.0124
BianchiL.DorigoM.GambardellaL.GutjahrW.A survey on metaheuristics for stochastic combinatorial optimizationNatural Computing: an International Journal20098223928710.1007/s11047-008-9098-4
SubramanianA.DrummondaL.BentesbC.OchiaL.FariasR.A parallel heuristic for the vehicle routing problem with simultaneous pickup and deliveryComputers & Operations Research201037111899191110.1016/j.cor.2009.10.011
ProtonotariosM.MourkousisG.VyridisI.VarvarigouT.Very large scale vehicle routing with time windows and stochastic demand using genetic algorithms with parallel fitness evaluationProceedings of 8th international conference on high performance computing and networking200046747610.1007/3-540-45492-6_47
GendreauM.LaporteG.SéguinR.A tabu search heuristic for the vehicle routing problem with stochastic demands and customersOperations Research199644346947710.1287/opre.44.3.469
L’EcuyerP.BuistE.Simulation in Java with SSJProceedings of 2005 winter simulation conference200561162010.1109/WSC.2005.1574301
SandersJ.KandrotE.CUDA by example: an introduction to general-purpose GPU programming2010ReadingAddison-Wesley
GendreauM.LaporteG.SéguinR.Stochastic vehicle routingEuropean Journal of Operational Research199688331210.1016/0377-2217(95)00050-X
MadhuK.SaxenaS.Parallel algorithms for vehicle routing problemsProceedings of 5th international conference on high performance computing1998171178
TalbiE.Parallel combinatorial optimization2006New YorkWiley
TalbiE.Metaheuristics. From design to implementation2009New YorkWiley
ArmbrustM.FoxA.GriffithR.JosephA.KatzR.KonwinskiA.LeeG.PattersonD.RabkinA.StoicaI.ZahariaM.A view of cloud computingCommunications of the ACM2010534505810.1145/1721654.1721672
SungurI.OrdóñezF.DessourkyM.A robust optimization approach for the capacitated vehicle routing problem with demand uncertaintyIIE Transactions20084050952310.1080/07408170701745378
RegoC.Node-ejection chains for the vehicle routing problem: sequential and parallel algorithmsParallel Computing200127320122210.1016/S0167-8191(00)00102-2
JuanA.FaulinJ.JorbaJ.RieraD.MasipD.BarriosB.On the use of Monte Carlo simulation, cache and splitting techniques to improve the Clarke and Wright savings heuristicsJournal of the Operational Research Society20116261085109710.1057/jors.2010.29
J. Berger (918_CR9) 2004; 31
E. Walker (918_CR41) 2008; 33
P. Balaprakash (918_CR5) 2010; 37
S. Mitra (918_CR29) 2008; 59
M. Protonotarios (918_CR31) 2000
C. Rego (918_CR32) 2001; 27
R. Bent (918_CR7) 2004; 52
L. Bianchi (918_CR11) 2009; 8
J. M. Marques (918_CR27) 2007; 11
C. Bastian (918_CR6) 1992; 56
R. Bent (918_CR8) 2007
(918_CR36) 2006
(918_CR19) 2008
V. Hemmelmayr (918_CR20) 2010; 202
A. Subramanian (918_CR34) 2010; 37
I. Sungur (918_CR35) 2008; 40
J. Sanders (918_CR33) 2010
A. Juan (918_CR22) 2011; 62
(918_CR37) 2009
G. Clarke (918_CR13) 1964; 12
B. Eksioglu (918_CR15) 2009; 57
M. Gendreau (918_CR16) 1996; 44
C. Novoa (918_CR30) 2009; 196
918_CR1
M. Armbrust (918_CR4) 2010; 53
A. Juan (918_CR23) 2011; 19
A. Bouthillier (918_CR12) 2005; 32
K. Madhu (918_CR28) 1998
918_CR3
D. Kirk (918_CR24) 2010
P. L’Ecuyer (918_CR25) 2005
B. Verweij (918_CR40) 2003; 24
D. Anderson (918_CR2) 2004
P. Hentenryck Van (918_CR39) 2010
T. Crainic (918_CR14) 2008
L. Bianchi (918_CR10) 2006; 5
G. Laporte (918_CR26) 2007; 54
918_CR21
G. Ghiani (918_CR18) 2003; 151
M. Gendreau (918_CR17) 1996; 88
K. Tan (918_CR38) 2007; 177
References_xml – reference: EksiogluB.VolkanA.ReismanA.The vehicle routing problem: a taxonomic reviewComputers & Industrial Engineering20095741472148310.1016/j.cie.2009.05.009
– reference: BouthillierA.CrainicT.A cooperative parallel metaheuristic for the vehicle routing problem with time windowsComputers and Operations Research20053271685170810.1016/j.cor.2003.11.023
– reference: VerweijB.AhmedS.KleywegtA.NemhauserG.ShapiroA.The sample average approximation method applied to stochastic routing problems: a computational studyComputational Optimization and Applications20032428933310.1023/A:1021814225969
– reference: TanK.CheongC.GohC.Solving multiobjective vehicle routing problem with stochastic demand via evolutionary computationEuropean Journal of Operational Research200717781383910.1016/j.ejor.2005.12.029
– reference: BentR.Van HentenryckP.Waiting and relocation strategies in online stochastic vehicle routingProceedings of the twentieth international joint conference on artificial intelligence200718161821
– reference: MadhuK.SaxenaS.Parallel algorithms for vehicle routing problemsProceedings of 5th international conference on high performance computing1998171178
– reference: GendreauM.LaporteG.SéguinR.A tabu search heuristic for the vehicle routing problem with stochastic demands and customersOperations Research199644346947710.1287/opre.44.3.469
– reference: Jézéquel, A. (1985). Probabilistic vehicle routing problems. MSc dissertation. Department of Civil Engineering. Massachussets Institute of Technology, Cambridge, MA.
– reference: MitraS.A parallel clustering technique for the vehicle routing problem with split deliveries and pickupsJournal of the Operational Research Society200859111532154610.1057/palgrave.jors.2602500
– reference: BastianC.Rinnooy KanA.The stochastic vehicle routing problem revisitedEuropean Journal of Operational Research19925640741210.1016/0377-2217(92)90323-2
– reference: BalaprakashP.BirattariM.StützleT.DorigoM.Estimation-based metaheuristics for the probabilitic travelling salesman problemComputers and Operations Research2010371939195110.1016/j.cor.2009.12.005
– reference: Van HentenryckP.BentR.Online stochastic combinatorial optimization2010BostonMIT Press
– reference: SungurI.OrdóñezF.DessourkyM.A robust optimization approach for the capacitated vehicle routing problem with demand uncertaintyIIE Transactions20084050952310.1080/07408170701745378
– reference: SubramanianA.DrummondaL.BentesbC.OchiaL.FariasR.A parallel heuristic for the vehicle routing problem with simultaneous pickup and deliveryComputers & Operations Research201037111899191110.1016/j.cor.2009.10.011
– reference: TalbiE.Metaheuristics. From design to implementation2009New YorkWiley
– reference: TalbiE.Parallel combinatorial optimization2006New YorkWiley
– reference: GoldenB.RaghavanS.WasilE.The vehicle routing problem: latest advances and new challenges2008New YorkSpringer
– reference: CrainicT.GoldenB.RaghavanS.WasilE.Parallel solution methods for vehicle routing problemsThe vehicle routing problem—latest advances and new challenges2008BerlinSpringer
– reference: SandersJ.KandrotE.CUDA by example: an introduction to general-purpose GPU programming2010ReadingAddison-Wesley
– reference: BentR.Van HentenryckP.Scenario-based planning for partially dynamic vehicle routing with stochastic customersOperations Research20045261526156310.1287/opre.1040.0124
– reference: L’EcuyerP.BuistE.Simulation in Java with SSJProceedings of 2005 winter simulation conference200561162010.1109/WSC.2005.1574301
– reference: ClarkeG.WrightJ.Scheduling of vehicles from a central depot to a number of delivering pointsOperations Research19641256858110.1287/opre.12.4.568
– reference: Amazon (2010). High performance computing using Amazon EC2. Amazon’s technical report. Available at: http://aws.amazon.com/ec2/hpc-applications/. Last access 19 March 2011.
– reference: AndersonD.BOINC: a system for public-resource computing and storageProceedings of the 5th IEEE/ACM international workshop on grid computing200441010.1109/GRID.2004.14
– reference: BianchiL.DorigoM.GambardellaL.GutjahrW.A survey on metaheuristics for stochastic combinatorial optimizationNatural Computing: an International Journal20098223928710.1007/s11047-008-9098-4
– reference: BergerJ.BarkaouiM.A parallel hybrid genetic algorithm for the vehicle routing problem with time windowsComputers & Operations Research200431122037205310.1016/S0305-0548(03)00163-1
– reference: WalkerE.Benchmarking Amazon EC2 for high-performance scientific computingLOGIN20083351823
– reference: Armbrust, M., Fox, A., Griffith, R., Joseph, A., Katz, R., Konwinski, A., Lee, G., Patterson, D., Rabkin, A., Stoica, I., & Zaharia, M. (2009). Above the clouds: a Berkeley view of cloud computing. Technical Report No. UCB/EECS-2009-28. Available at: http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html. Last access 15 September 2010.
– reference: ArmbrustM.FoxA.GriffithR.JosephA.KatzR.KonwinskiA.LeeG.PattersonD.RabkinA.StoicaI.ZahariaM.A view of cloud computingCommunications of the ACM2010534505810.1145/1721654.1721672
– reference: NovoaC.StorerR.An approximate dynamic programming approach for the vehicle routing problem with stochastic demandsEuropean Journal of Operational Research200919650951510.1016/j.ejor.2008.03.023
– reference: HemmelmayrV.DoernerK.HartlR.SavelsberghM.Vendor managed inventory for environments with stochastic product usageEuropean Journal of Operational Research201020268669510.1016/j.ejor.2009.06.003
– reference: ProtonotariosM.MourkousisG.VyridisI.VarvarigouT.Very large scale vehicle routing with time windows and stochastic demand using genetic algorithms with parallel fitness evaluationProceedings of 8th international conference on high performance computing and networking200046747610.1007/3-540-45492-6_47
– reference: MarquesJ. M.VilajosanaX.DaradoumisT.NavarroL.LaCOLLA: middleware for self-sufficient online collaborationIEEE Internet Computing2007112566410.1109/MIC.2007.43
– reference: GendreauM.LaporteG.SéguinR.Stochastic vehicle routingEuropean Journal of Operational Research199688331210.1016/0377-2217(95)00050-X
– reference: RegoC.Node-ejection chains for the vehicle routing problem: sequential and parallel algorithmsParallel Computing200127320122210.1016/S0167-8191(00)00102-2
– reference: KirkD.HwuW.Programming massively parallel processors. A hands-on approach2010San MateoMorgan Kaufmann
– reference: LaporteG.What you should know about the Vehicle Routing ProblemNaval Research Logistics20075481181910.1002/nav.20261
– reference: JuanA.FaulinJ.GrasmanS.RieraD.MarullJ.MendezC.Using safety stocks and simulation to solve the vehicle routing problem with stochastic demandsTransportation Research Part C201119575176510.1016/j.trc.2010.09.007
– reference: GhianiG.GuerrieroF.LaporteG.Real-time vehicle routing: Solution concepts, algorithms and parallel computing strategiesEuropean Journal of Operational Research2003151111110.1016/S0377-2217(02)00915-3
– reference: JuanA.FaulinJ.JorbaJ.RieraD.MasipD.BarriosB.On the use of Monte Carlo simulation, cache and splitting techniques to improve the Clarke and Wright savings heuristicsJournal of the Operational Research Society20116261085109710.1057/jors.2010.29
– reference: BianchiL.BirattariM.ChiarandiniM.ManfrinM.MastrolilliM.PaqueteL.Rossi-DoriaO.SchiavinottoT.Hybrid metaheuristics for the vehicle routing problem with stochastic demandsJournal of Mathematical Modelling and Algorithms200659111010.1007/s10852-005-9033-y
– start-page: 4
  volume-title: Proceedings of the 5th IEEE/ACM international workshop on grid computing
  year: 2004
  ident: 918_CR2
  doi: 10.1109/GRID.2004.14
– volume: 31
  start-page: 2037
  issue: 12
  year: 2004
  ident: 918_CR9
  publication-title: Computers & Operations Research
  doi: 10.1016/S0305-0548(03)00163-1
– volume: 33
  start-page: 18
  issue: 5
  year: 2008
  ident: 918_CR41
  publication-title: LOGIN
– volume: 57
  start-page: 1472
  issue: 4
  year: 2009
  ident: 918_CR15
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2009.05.009
– volume: 27
  start-page: 201
  issue: 3
  year: 2001
  ident: 918_CR32
  publication-title: Parallel Computing
  doi: 10.1016/S0167-8191(00)00102-2
– volume: 53
  start-page: 50
  issue: 4
  year: 2010
  ident: 918_CR4
  publication-title: Communications of the ACM
  doi: 10.1145/1721654.1721672
– volume-title: Metaheuristics. From design to implementation
  year: 2009
  ident: 918_CR37
– start-page: 171
  volume-title: Proceedings of 5th international conference on high performance computing
  year: 1998
  ident: 918_CR28
– volume-title: CUDA by example: an introduction to general-purpose GPU programming
  year: 2010
  ident: 918_CR33
– start-page: 1816
  volume-title: Proceedings of the twentieth international joint conference on artificial intelligence
  year: 2007
  ident: 918_CR8
– volume-title: Online stochastic combinatorial optimization
  year: 2010
  ident: 918_CR39
– volume-title: Programming massively parallel processors. A hands-on approach
  year: 2010
  ident: 918_CR24
– volume-title: Parallel combinatorial optimization
  year: 2006
  ident: 918_CR36
– volume: 56
  start-page: 407
  year: 1992
  ident: 918_CR6
  publication-title: European Journal of Operational Research
  doi: 10.1016/0377-2217(92)90323-2
– start-page: 611
  volume-title: Proceedings of 2005 winter simulation conference
  year: 2005
  ident: 918_CR25
  doi: 10.1109/WSC.2005.1574301
– volume: 40
  start-page: 509
  year: 2008
  ident: 918_CR35
  publication-title: IIE Transactions
  doi: 10.1080/07408170701745378
– volume: 37
  start-page: 1939
  year: 2010
  ident: 918_CR5
  publication-title: Computers and Operations Research
  doi: 10.1016/j.cor.2009.12.005
– volume-title: The vehicle routing problem: latest advances and new challenges
  year: 2008
  ident: 918_CR19
– start-page: 467
  volume-title: Proceedings of 8th international conference on high performance computing and networking
  year: 2000
  ident: 918_CR31
  doi: 10.1007/3-540-45492-6_47
– volume: 8
  start-page: 239
  issue: 2
  year: 2009
  ident: 918_CR11
  publication-title: Natural Computing: an International Journal
  doi: 10.1007/s11047-008-9098-4
– volume-title: The vehicle routing problem—latest advances and new challenges
  year: 2008
  ident: 918_CR14
– volume: 62
  start-page: 1085
  issue: 6
  year: 2011
  ident: 918_CR22
  publication-title: Journal of the Operational Research Society
  doi: 10.1057/jors.2010.29
– volume: 37
  start-page: 1899
  issue: 11
  year: 2010
  ident: 918_CR34
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2009.10.011
– volume: 151
  start-page: 1
  issue: 1
  year: 2003
  ident: 918_CR18
  publication-title: European Journal of Operational Research
  doi: 10.1016/S0377-2217(02)00915-3
– volume: 19
  start-page: 751
  issue: 5
  year: 2011
  ident: 918_CR23
  publication-title: Transportation Research Part C
  doi: 10.1016/j.trc.2010.09.007
– volume: 52
  start-page: 1526
  issue: 6
  year: 2004
  ident: 918_CR7
  publication-title: Operations Research
  doi: 10.1287/opre.1040.0124
– ident: 918_CR3
– volume: 59
  start-page: 1532
  issue: 11
  year: 2008
  ident: 918_CR29
  publication-title: Journal of the Operational Research Society
  doi: 10.1057/palgrave.jors.2602500
– ident: 918_CR1
– volume: 44
  start-page: 469
  issue: 3
  year: 1996
  ident: 918_CR16
  publication-title: Operations Research
  doi: 10.1287/opre.44.3.469
– volume: 12
  start-page: 568
  year: 1964
  ident: 918_CR13
  publication-title: Operations Research
  doi: 10.1287/opre.12.4.568
– volume: 54
  start-page: 811
  year: 2007
  ident: 918_CR26
  publication-title: Naval Research Logistics
  doi: 10.1002/nav.20261
– ident: 918_CR21
– volume: 11
  start-page: 56
  issue: 2
  year: 2007
  ident: 918_CR27
  publication-title: IEEE Internet Computing
  doi: 10.1109/MIC.2007.43
– volume: 202
  start-page: 686
  year: 2010
  ident: 918_CR20
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2009.06.003
– volume: 177
  start-page: 813
  year: 2007
  ident: 918_CR38
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2005.12.029
– volume: 88
  start-page: 3
  issue: 3
  year: 1996
  ident: 918_CR17
  publication-title: European Journal of Operational Research
  doi: 10.1016/0377-2217(95)00050-X
– volume: 24
  start-page: 289
  year: 2003
  ident: 918_CR40
  publication-title: Computational Optimization and Applications
  doi: 10.1023/A:1021814225969
– volume: 196
  start-page: 509
  year: 2009
  ident: 918_CR30
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2008.03.023
– volume: 5
  start-page: 91
  year: 2006
  ident: 918_CR10
  publication-title: Journal of Mathematical Modelling and Algorithms
  doi: 10.1007/s10852-005-9033-y
– volume: 32
  start-page: 1685
  issue: 7
  year: 2005
  ident: 918_CR12
  publication-title: Computers and Operations Research
  doi: 10.1016/j.cor.2003.11.023
SSID ssj0001185
Score 2.3272176
Snippet This paper focuses on the Vehicle Routing Problem with Stochastic Demands (VRPSD) and discusses how Parallel and Distributed Computing Systems can be employed...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 43
SubjectTerms Algorithms
Business and Management
Combinatorics
Computer networks
Computer simulation
Customers
Demand
Distributed processing
Distributed processing (Computers)
Marketing
Mobile communication systems
Monte Carlo simulation
Operations research
Operations Research/Decision Theory
Optimization
Parallel processing
Probability distribution
Random variables
Routing
Safety stocks
Small & medium sized enterprises-SME
Stochastic analysis
Studies
Theory of Computation
Traveling salesman problem
Vehicles
Wireless communication systems
SummonAdditionalLinks – databaseName: ABI/INFORM Collection
  dbid: 7WY
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB1BQag90LJQsVCQK_EhgawmazvOnlCFqDhVPRRRTpZjOxQp3Syb3R766zvjdbZdEL1wySXjONaMx-Px-D2AN4UjnLEq42VQJZd1HXiFyzwP6I_HJWrdFjaSTejj4_LsbHySEm5dKqvsfWJ01L51lCM_wI0AnRrJTHya_ubEGkWnq4lC4z48wIVaEYOB_v5j5YkxeI4ljLgJ4lRF2Z9qLq_OSU2VQriZHuclv1pbl_70zn8dk8bV52j7f_97Bx6nuJMdLg3lCdwLkwE86sveB7Dd0zuwNNsHsHULq_ApTGNxASOo8KYJDXvHPGHuEl1W8MzF1iSAQTDDQLThxFrP0LIpY8Haml2Gc-qazdqlYKKy6RilghnGoO7cEmg08-GC7h8_g29HX04_f-WJroE7qcQc43Qlqlygv8xt6TPlCk1wg0FJYUfWhqwIuqi8UE6JwlUFehflc2mFs6OAOyuxCxuTdhKeA8t10F4LnwetJH7H2qKuqwpjIy3rrMqGkPXKMi5hmROlRmNuUJhJvwb1a0i_5moIH1ZNpksgj7uE35IFmEQEio-OUiXdT7voOnNIl3EVCuJ_vI9y5Aywf2fTnQYcBcFqrUnurUniJHbrr3vrMcmJdObGdIawv3pNLakwbhLaBcmMxiWGZEoO4WNvo7c-8a8Rvri7w5ewOYq8H1TpuAcb89kivIKH7nL-q5u9jrPsGqOkLc0
  priority: 102
  providerName: ProQuest
Title Using parallel & distributed computing for real-time solving of vehicle routing problems with stochastic demands
URI https://link.springer.com/article/10.1007/s10479-011-0918-z
https://www.proquest.com/docview/1400076403
https://www.proquest.com/docview/1429861354
Volume 207
WOSCitedRecordID wos000321869500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1572-9338
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0001185
  issn: 0254-5330
  databaseCode: 7WY
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM global
  customDbUrl:
  eissn: 1572-9338
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0001185
  issn: 0254-5330
  databaseCode: M0C
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1572-9338
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0001185
  issn: 0254-5330
  databaseCode: P5Z
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1572-9338
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0001185
  issn: 0254-5330
  databaseCode: K7-
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1572-9338
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0001185
  issn: 0254-5330
  databaseCode: M7S
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1572-9338
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0001185
  issn: 0254-5330
  databaseCode: BENPR
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1572-9338
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0001185
  issn: 0254-5330
  databaseCode: M2P
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature - Connect here FIRST to enable access
  customDbUrl:
  eissn: 1572-9338
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001185
  issn: 0254-5330
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED_WdozuYd2ylaVrgwb7gBWBbUmW89iWlsFYCOs-ur0YWZbXgZeUOOlD__reKXKadB-wvRwYn2RZH6c76e53AC9SSzhjRcQzpzIuq8rxArd57lAe9zMcdZMan2xCDwbZ2Vl_GOK4m9bbvb2S9JJ6KdhNavLtQfO3H2f8ag02FIHNkIl--nkhflFj9n6LaPlwcp1srzJ_V8XKZnRbJP9yN-q3nJOt_2rsQ3gQNEx2MJ8Sj-COG3XgXuvg3oGtNpEDC-u6A_eXUAkfw4V3I2AECl7XrmavWEnoupQYy5XM-tLEgOouQ5Wz5pSfnuEcprMJNq7YpTunT7PJeM4YktY0jA59GWqb9twQPDQr3U-KNH4Cn06OPx695SExA7dSiSlq5EoUsUDJGJusjJRNNQELOiWFSYxxUep0WpRCWSVSW6QoR1QZSyOsSRzaUGIb1kfjkXsKLNZOl1qUsdNKYj3GpFVVFKgFaVlFRdSFqB2h3AbUckqeUec3eMvU1Tl2dU5dnV914c2iyMUcsuNvzC9p2POQ8hNJQ4cizXcza5r8gMJuFTJiO157Plr2-H1rQvQC_gUBaK1w7q5w4nK1q6_bCZYHcdGg_eWvRGUkuvB88ZpKkgvcyI1nxJP0M1S-lOzCfjvplqr40x_u_BP3M9hMfMIPcnHchfXpZOb24K69nP5oJj1Y01--9mDj8Hgw_IBP7zRH-j46IpoMiepTpEP1redX5TX2XytQ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgngcKCwgFgoYiYIEskhiO84eEKqAqtWWFYci9eY6jkMrpZtls1tEfxS_kZk8tl0QvfXAJZeM7TxmxjP2-PsAXsSOcMbSgCdeJVzmuecpTvPcoz8eJPjXbWxrsgk9GiX7-4MvK_CrOwtDZZWdT6wddVY6WiN_i4kA7RrJQLyffOfEGkW7qx2FRqMWQ__zB6Zs1budj_h_N6Jo69Peh23esgpwJ5WYYTipRBoKNOvQJlmgXKwJFc8rKWxkrQ9ir-M0E8opEbs0RiNQWSitcDbymAAI7PcKXJUiicmihpovPD8G63XJJCZdnKo2u13U5qie1FSZhMn7IEz46dI8-Ods8Ne2bD3bba39b9_pDtxu42q22RjCXVjx4x5c78r6e7DW0Vew1pv14NY5LMZ7MKmLJxhBoReFL9hLlhGmMNGB-Yy5ujUJYJDPMNAu-Ozo2DO0XFqRYWXOTvwhDc2mZSPYUvVUjJa6GcbY7tASKDbL_DGdr74PXy_lgzyA1XE59g-BhdrrTIss9FpJ7MfaOM_TFGM_LfMgDfoQdMphXIvVTpQhhTlDmSZ9MqhPhvTJnPbh9aLJpAEquUh4gzTOtESneKloKaj6ZudVZTbpsLFCQXyOV7UcOTsc39n2zAa-BcGGLUmuL0mik3LLtzttNa2TrMyZqvbh-eI2taTCv7Ev5yQTDRIMOZXsw5vOJs518a83fHTxgM_gxvbe512zuzMaPoabUc1xQlWd67A6m879E7jmTmZH1fRpbeEMDi7bVH4DzrKJMw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwED-NDk3wwKCAVhhgJAYSKFoSx3H6gNBgq5iGqgqBtDfjOM42KWtK0w6xP42_jrvE6VYQe9sDL3nJ2c7Hfdp3vwN4ERvCGUt9L7Ei8aI8t16KZt6zqI_7Cf51Heu62YQcDpPDw_5oBX61tTCUVtnqxFpRZ6WhPfJtDATo1Cjy-Xbu0iJGu4N3k-8edZCik9a2nUbDIgf25w8M36q3-7v4r7fCcLD35cNHz3UY8Ewk-AxdS8HTgKOIBzrJfGFiSQh5VkRch1pbP7YyTjMujOCxSWMUCJEFkeZGhxaDAY7z3oBVyTHo6cDq-73h6PPCDqDrXidQYgjmUQ5ne6baFO5FkvKUMJTvB4l3vmQV_7QNfx3S1rZvsP4_f7W7cMd53GynEZF7sGLHXVhrE_67sN42tmBOz3Xh9iWUxvswqdMqGIGkF4Ut2EuWEdowNQqzGTP1aCJA95-hC154s5NTy1Cmaa-GlTk7s8e0NJuWDaFr4lMx2gRn6H2bY01w2Syzp1R5_QC-XssHeQidcTm2G8ACaWUmeRZYKSKcR-s4z9MUvUIZ5X7q98BvGUUZh-JOzUQKdYE_TbylkLcU8ZY678HrxZBJA2FyFfEWcZ9yLVDxUtEmUXWk51WldqgMWSAhPsermo7UIK5vtKvmwLcgQLElys0lSlRfZvl2y7nKqc9KXbBtD54vbtNISgkc23JONGE_QWdURD1408rHpSn-9YaPrl7wGayhhKhP-8ODx3ArrJufULrnJnRm07l9AjfN2eykmj514s7g23XLym_5-pOF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+parallel+distributed+computing+for+real-time+solving+of+vehicle+routing+problems+with+stochastic+demands&rft.jtitle=Annals+of+operations+research&rft.au=Juan%2C+Angel+A&rft.au=Faulin%2C+Javier&rft.au=Jorba%2C+Josep&rft.au=Caceres%2C+Jose&rft.date=2013-08-01&rft.pub=Springer&rft.issn=0254-5330&rft.volume=207&rft.issue=1&rft.spage=43&rft_id=info:doi/10.1007%2Fs10479-011-0918-z&rft.externalDocID=A343259180
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0254-5330&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0254-5330&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0254-5330&client=summon