Using parallel & distributed computing for real-time solving of vehicle routing problems with stochastic demands

This paper focuses on the Vehicle Routing Problem with Stochastic Demands (VRPSD) and discusses how Parallel and Distributed Computing Systems can be employed to efficiently solve the VRPSD. Our approach deals with uncertainty in the customer demands by considering safety stocks, i.e. when designing...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Annals of operations research Ročník 207; číslo 1; s. 43 - 65
Hlavní autori: Juan, Angel A., Faulin, Javier, Jorba, Josep, Caceres, Jose, Marquès, Joan Manuel
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Boston Springer US 01.08.2013
Springer
Springer Nature B.V
Predmet:
ISSN:0254-5330, 1572-9338
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This paper focuses on the Vehicle Routing Problem with Stochastic Demands (VRPSD) and discusses how Parallel and Distributed Computing Systems can be employed to efficiently solve the VRPSD. Our approach deals with uncertainty in the customer demands by considering safety stocks, i.e. when designing the routes, part of the vehicle capacity is reserved to deal with potential emergency situations caused by unexpected demands. Thus, for a given VRPSD instance, our algorithm considers different levels of safety stocks. For each of these levels, a different scenario is defined. Then, the algorithm solves each scenario by integrating Monte Carlo simulation inside a heuristic-randomization process. This way, expected variable costs due to route failures can be naturally estimated even when customers’ demands follow a non-normal probability distribution. Use of parallelization strategies is then considered to run multiple instances of the algorithm in a concurrent way. The resulting concurrent solutions are then compared and the one with the minimum total costs is selected. Two numerical experiments allow analyzing the algorithm’s performance under different parallelization schemas.
Bibliografia:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0254-5330
1572-9338
DOI:10.1007/s10479-011-0918-z