Implicitisation and Parameterisation in Polynomial Functors

In earlier work, the second author showed that a closed subset of a polynomial functor can always be defined by finitely many polynomial equations. In follow-up work on GL ∞ -varieties, Bik–Draisma–Eggermont–Snowden showed, among other things, that in characteristic zero every such closed subset is...

Full description

Saved in:
Bibliographic Details
Published in:Foundations of computational mathematics Vol. 24; no. 5; pp. 1567 - 1593
Main Authors: Blatter, Andreas, Draisma, Jan, Ventura, Emanuele
Format: Journal Article
Language:English
Published: New York Springer US 01.10.2024
Springer Nature B.V
Subjects:
ISSN:1615-3375, 1615-3383
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In earlier work, the second author showed that a closed subset of a polynomial functor can always be defined by finitely many polynomial equations. In follow-up work on GL ∞ -varieties, Bik–Draisma–Eggermont–Snowden showed, among other things, that in characteristic zero every such closed subset is the image of a morphism whose domain is the product of a finite-dimensional affine variety and a polynomial functor. In this paper, we show that both results can be made algorithmic: there exists an algorithm implicitise that takes as input a morphism into a polynomial functor and outputs finitely many equations defining the closure of the image; and an algorithm parameterise that takes as input a finite set of equations defining a closed subset of a polynomial functor and outputs a morphism whose image is that closed subset.
AbstractList In earlier work, the second author showed that a closed subset of a polynomial functor can always be defined by finitely many polynomial equations. In follow-up work on GL∞-varieties, Bik–Draisma–Eggermont–Snowden showed, among other things, that in characteristic zero every such closed subset is the image of a morphism whose domain is the product of a finite-dimensional affine variety and a polynomial functor. In this paper, we show that both results can be made algorithmic: there exists an algorithm implicitise that takes as input a morphism into a polynomial functor and outputs finitely many equations defining the closure of the image; and an algorithm parameterise that takes as input a finite set of equations defining a closed subset of a polynomial functor and outputs a morphism whose image is that closed subset.
In earlier work, the second author showed that a closed subset of a polynomial functor can always be defined by finitely many polynomial equations. In follow-up work on $${\text {GL}}_\infty $$ GL ∞ -varieties, Bik–Draisma–Eggermont–Snowden showed, among other things, that in characteristic zero every such closed subset is the image of a morphism whose domain is the product of a finite-dimensional affine variety and a polynomial functor. In this paper, we show that both results can be made algorithmic: there exists an algorithm $$\textbf{implicitise}$$ implicitise that takes as input a morphism into a polynomial functor and outputs finitely many equations defining the closure of the image; and an algorithm $$\textbf{parameterise}$$ parameterise that takes as input a finite set of equations defining a closed subset of a polynomial functor and outputs a morphism whose image is that closed subset.
In earlier work, the second author showed that a closed subset of a polynomial functor can always be defined by finitely many polynomial equations. In follow-up work on GL ∞ -varieties, Bik–Draisma–Eggermont–Snowden showed, among other things, that in characteristic zero every such closed subset is the image of a morphism whose domain is the product of a finite-dimensional affine variety and a polynomial functor. In this paper, we show that both results can be made algorithmic: there exists an algorithm implicitise that takes as input a morphism into a polynomial functor and outputs finitely many equations defining the closure of the image; and an algorithm parameterise that takes as input a finite set of equations defining a closed subset of a polynomial functor and outputs a morphism whose image is that closed subset.
Author Ventura, Emanuele
Blatter, Andreas
Draisma, Jan
Author_xml – sequence: 1
  givenname: Andreas
  surname: Blatter
  fullname: Blatter, Andreas
  organization: Mathematical Institute, University of Bern
– sequence: 2
  givenname: Jan
  surname: Draisma
  fullname: Draisma, Jan
  email: jan.draisma@unibe.ch
  organization: Mathematical Institute, University of Bern, Department of Mathematics and Computer Science, Eindhoven University of Technology
– sequence: 3
  givenname: Emanuele
  surname: Ventura
  fullname: Ventura, Emanuele
  organization: Dipartimento di Scienze Matematiche “G.L. Lagrange”, Politecnico di Torino
BookMark eNp9kMtOwzAQRS1UJNrCD7CKxNrgRxzHYoUqCpUq0QWsLcexkavEDra76N-TEh47VjOaufeO5izAzAdvALjG6BYjxO8SRgTVEBEKkaiwgNUZmOMKM0hpTWe_PWcXYJHSHiHMBC7n4H7TD53TLruksgu-UL4tdiqq3mQTf4bOF7vQHX3oneqK9cHrHGK6BOdWdclcfdcleFs_vq6e4fblabN62EJdMpphya0hxNaN0Jo3grMGGaEaK7SoFNEMt9wYy8uGY2FKRFpaMlOLdnyJjztLl-Bmyh1i-DiYlOU-HKIfT0qKKcKECVaNKjKpdAwpRWPlEF2v4lFiJE-Q5ARJjpDkFyR5MtHJlEaxfzfxL_of1ycA8Gv9
Cites_doi 10.1016/j.aim.2011.08.009
10.2140/ant.2017.11.2197
10.1090/jams/923
10.1007/s002220050119
10.1007/3-540-54522-0_108.
10.1007/s00222-019-00889-y
10.1007/978-3-319-16721-3.
10.1090/S0025-5718-2010-02415-9
10.4310/MRL.2013.v20.n4.a10
10.1007/s10231-011-0238-6
10.5427/jsing.2018.17g
10.1007/3-540-18170-9_156
10.1007/BF02684802.
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1007/s10208-023-09619-6
DatabaseName Springer Nature OA Free Journals
CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Economics
Mathematics
Applied Sciences
Computer Science
EISSN 1615-3383
EndPage 1593
ExternalDocumentID 10_1007_s10208_023_09619_6
GrantInformation_xml – fundername: University of Bern
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
29H
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BAPOH
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
IAO
IEA
IHE
IJ-
IKXTQ
IOF
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
MK~
N2Q
N9A
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9R
PF0
PQQKQ
PT4
Q2X
QOS
R89
R9I
RIG
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z81
Z83
Z88
ZMTXR
~8M
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
ICD
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c453t-47fe22f8b9cc7b975b0e9abf9c96a2c51d7eef74b719e402d345e89d10271d7f3
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001060055800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1615-3375
IngestDate Fri Jul 25 19:04:03 EDT 2025
Sat Nov 29 04:08:44 EST 2025
Fri Feb 21 02:39:44 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords 14M99
13P99
Polynomial functor
Elimination
Parameterisation
20G05
15A69
Schur functors
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c453t-47fe22f8b9cc7b975b0e9abf9c96a2c51d7eef74b719e402d345e89d10271d7f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/10.1007/s10208-023-09619-6
PQID 3130125956
PQPubID 43692
PageCount 27
ParticipantIDs proquest_journals_3130125956
crossref_primary_10_1007_s10208_023_09619_6
springer_journals_10_1007_s10208_023_09619_6
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle The Journal of the Society for the Foundations of Computational Mathematics
PublicationTitle Foundations of computational mathematics
PublicationTitleAbbrev Found Comput Math
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References J.M. Landsberg and Giorgio Ottaviani. Equations for secant varieties of Veronese and other varieties. Ann. Mat. Pura Appl. (4), 192(4):569–606, 2013.
DraismaJanTopological Noetherianity of polynomial functorsJ. Am. Math. Soc.201932691707398198610.1090/jams/923
M. J. Greenberg. Rational points in Henselian discrete valuation rings. Publ. Math., Inst. Hautes Étud. Sci., 31:563–568, 1966. https://doi.org/10.1007/BF02684802.
David A. Cox, John Little, and Donal O’Shea. Ideals, varieties, and algorithms. Undergraduate Texts in Mathematics. Springer, Cham, fourth edition, 2015. An introduction to computational algebraic geometry and commutative algebra. https://doi.org/10.1007/978-3-319-16721-3.
Arthur Bik. Strength and noetherianity for infinite tensors. PhD thesis, Universität Bern, 2020.
David A. Cox, John Little, and Donal O’Shea. Using algebraic geometry, volume 185 of Graduate Texts in Mathematics. Springer, New York, second edition, 2005.
Toby Ord. How to simulate everything (all at once). URL: http://www.amirrorclear.net/academic/ideas/simulation/index.html.
Arthur Bik, Jan Draisma, Rob H. Eggermont, and Andrew Snowden. Uniformity for limits of tensors. 2023. Preprint, arXiv:2305.19866.
ErmanDanielSamSteven VSnowdenAndrewBig polynomial rings and Stillman’s conjectureInvent. Math.20192182413439401170310.1007/s00222-019-00889-y
Gert-Martin Greuel and Gerhard Pfister. A Singular introduction to commutative algebra. Springer, Berlin, extended edition, 2008. With contributions by Olaf Bachmann, Christoph Lossen and Hans Schönemann.
Teresa Krick and Alessandro Logar. An algorithm for the computation of the radical of an ideal in the ring of polynomials. In Applied algebra, algebraic algorithms and error-correcting codes (New Orleans, LA, 1991), volume 539 of Lecture Notes in Comput. Sci., pages 195–205. Springer, Berlin, 1991. https://doi.org/10.1007/3-540-54522-0_108.
Arthur Bik, Jan Draisma, Rob H. Eggermont, and Andrew Snowden. The geometry of polynomial representations. Int. Math. Res. Not., 2021. To appear, arXiv:2105.12621.
ProcesiClaudioLie Groups. An Approach through Invariants and Representations2007New YorkSpringer
Christopher J. Hillar, Robert Krone, and Anton Leykin. Equivariant Gröbner bases. In The 50th anniversary of Gröbner bases. Proceedings of the 8th Mathematical Society of Japan-Seasonal Institute (MSJ-SI 2015), Osaka, Japan, July 1–10, 2015, pages 129–154. Tokyo: Mathematical Society of Japan (MSJ), 2018.
William Fulton and Joe Harris. Representation Theory. A First Course. Number 129 in Graduate Texts in Mathematics. Springer-Verlag, New York, 1991.
Daniel E. Cohen. Closure relations, Buchberger’s algorithm, and polynomials in infinitely many variables. In Computation theory and logic, volume 270 of Lect. Notes Comput. Sci., pages 78–87, 1987.
FriedlanderEric MSuslinAndreiCohomology of finite group schemes over a fieldInvent. Math.19971272209270142761810.1007/s002220050119
Christopher J. Hillar, Robert Krone, and Anton Leykin. EquivariantGB Macaulay2 package. Webpage: http://people.math.gatech.edu/~rkrone3/EquivariantGB.html, 2013.
HillarChristopher JSullivantSethFinite Gröbner bases in infinite dimensional polynomial rings and applicationsAdv. Math.201222112510.1016/j.aim.2011.08.009
DerksenHarmEggermontRob HSnowdenAndrewTopological noetherianity for cubic polynomialsAlgebra Number Theory201711921972212373546710.2140/ant.2017.11.2197
RondGuillaumeArtin approximationJ. Singul.201817108192381313310.5427/jsing.2018.17g
BrouwerAndries EDraismaJanEquivariant Gröbner bases and the two-factor modelMath. Comput.2011801123113310.1090/S0025-5718-2010-02415-9
RaicuClaudiu3×3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3 \times 3$$\end{document} minors of catalecticantsMath. Res. Lett.2013204745756318803010.4310/MRL.2013.v20.n4.a10
9619_CR14
9619_CR15
Claudio Procesi (9619_CR21) 2007
Andries E Brouwer (9619_CR4) 2011; 80
9619_CR16
9619_CR12
9619_CR13
9619_CR1
9619_CR2
Jan Draisma (9619_CR9) 2019; 32
9619_CR3
9619_CR20
9619_CR5
Eric M Friedlander (9619_CR11) 1997; 127
9619_CR6
9619_CR7
Daniel Erman (9619_CR10) 2019; 218
Guillaume Rond (9619_CR23) 2018; 17
Christopher J Hillar (9619_CR17) 2012; 221
9619_CR18
Harm Derksen (9619_CR8) 2017; 11
9619_CR19
Claudiu Raicu (9619_CR22) 2013; 20
References_xml – reference: M. J. Greenberg. Rational points in Henselian discrete valuation rings. Publ. Math., Inst. Hautes Étud. Sci., 31:563–568, 1966. https://doi.org/10.1007/BF02684802.
– reference: RaicuClaudiu3×3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3 \times 3$$\end{document} minors of catalecticantsMath. Res. Lett.2013204745756318803010.4310/MRL.2013.v20.n4.a10
– reference: Arthur Bik, Jan Draisma, Rob H. Eggermont, and Andrew Snowden. The geometry of polynomial representations. Int. Math. Res. Not., 2021. To appear, arXiv:2105.12621.
– reference: Gert-Martin Greuel and Gerhard Pfister. A Singular introduction to commutative algebra. Springer, Berlin, extended edition, 2008. With contributions by Olaf Bachmann, Christoph Lossen and Hans Schönemann.
– reference: Toby Ord. How to simulate everything (all at once). URL: http://www.amirrorclear.net/academic/ideas/simulation/index.html.
– reference: William Fulton and Joe Harris. Representation Theory. A First Course. Number 129 in Graduate Texts in Mathematics. Springer-Verlag, New York, 1991.
– reference: RondGuillaumeArtin approximationJ. Singul.201817108192381313310.5427/jsing.2018.17g
– reference: David A. Cox, John Little, and Donal O’Shea. Using algebraic geometry, volume 185 of Graduate Texts in Mathematics. Springer, New York, second edition, 2005.
– reference: David A. Cox, John Little, and Donal O’Shea. Ideals, varieties, and algorithms. Undergraduate Texts in Mathematics. Springer, Cham, fourth edition, 2015. An introduction to computational algebraic geometry and commutative algebra. https://doi.org/10.1007/978-3-319-16721-3.
– reference: DraismaJanTopological Noetherianity of polynomial functorsJ. Am. Math. Soc.201932691707398198610.1090/jams/923
– reference: J.M. Landsberg and Giorgio Ottaviani. Equations for secant varieties of Veronese and other varieties. Ann. Mat. Pura Appl. (4), 192(4):569–606, 2013.
– reference: Arthur Bik. Strength and noetherianity for infinite tensors. PhD thesis, Universität Bern, 2020.
– reference: Christopher J. Hillar, Robert Krone, and Anton Leykin. EquivariantGB Macaulay2 package. Webpage: http://people.math.gatech.edu/~rkrone3/EquivariantGB.html, 2013.
– reference: Daniel E. Cohen. Closure relations, Buchberger’s algorithm, and polynomials in infinitely many variables. In Computation theory and logic, volume 270 of Lect. Notes Comput. Sci., pages 78–87, 1987.
– reference: FriedlanderEric MSuslinAndreiCohomology of finite group schemes over a fieldInvent. Math.19971272209270142761810.1007/s002220050119
– reference: ErmanDanielSamSteven VSnowdenAndrewBig polynomial rings and Stillman’s conjectureInvent. Math.20192182413439401170310.1007/s00222-019-00889-y
– reference: DerksenHarmEggermontRob HSnowdenAndrewTopological noetherianity for cubic polynomialsAlgebra Number Theory201711921972212373546710.2140/ant.2017.11.2197
– reference: ProcesiClaudioLie Groups. An Approach through Invariants and Representations2007New YorkSpringer
– reference: Arthur Bik, Jan Draisma, Rob H. Eggermont, and Andrew Snowden. Uniformity for limits of tensors. 2023. Preprint, arXiv:2305.19866.
– reference: HillarChristopher JSullivantSethFinite Gröbner bases in infinite dimensional polynomial rings and applicationsAdv. Math.201222112510.1016/j.aim.2011.08.009
– reference: Christopher J. Hillar, Robert Krone, and Anton Leykin. Equivariant Gröbner bases. In The 50th anniversary of Gröbner bases. Proceedings of the 8th Mathematical Society of Japan-Seasonal Institute (MSJ-SI 2015), Osaka, Japan, July 1–10, 2015, pages 129–154. Tokyo: Mathematical Society of Japan (MSJ), 2018.
– reference: BrouwerAndries EDraismaJanEquivariant Gröbner bases and the two-factor modelMath. Comput.2011801123113310.1090/S0025-5718-2010-02415-9
– reference: Teresa Krick and Alessandro Logar. An algorithm for the computation of the radical of an ideal in the ring of polynomials. In Applied algebra, algebraic algorithms and error-correcting codes (New Orleans, LA, 1991), volume 539 of Lecture Notes in Comput. Sci., pages 195–205. Springer, Berlin, 1991. https://doi.org/10.1007/3-540-54522-0_108.
– ident: 9619_CR16
– volume: 221
  start-page: 1
  year: 2012
  ident: 9619_CR17
  publication-title: Adv. Math.
  doi: 10.1016/j.aim.2011.08.009
– volume: 11
  start-page: 2197
  issue: 9
  year: 2017
  ident: 9619_CR8
  publication-title: Algebra Number Theory
  doi: 10.2140/ant.2017.11.2197
– volume: 32
  start-page: 691
  year: 2019
  ident: 9619_CR9
  publication-title: J. Am. Math. Soc.
  doi: 10.1090/jams/923
– volume: 127
  start-page: 209
  issue: 2
  year: 1997
  ident: 9619_CR11
  publication-title: Invent. Math.
  doi: 10.1007/s002220050119
– ident: 9619_CR18
  doi: 10.1007/3-540-54522-0_108.
– ident: 9619_CR1
– ident: 9619_CR2
– ident: 9619_CR14
– ident: 9619_CR15
– ident: 9619_CR12
– ident: 9619_CR6
– volume: 218
  start-page: 413
  issue: 2
  year: 2019
  ident: 9619_CR10
  publication-title: Invent. Math.
  doi: 10.1007/s00222-019-00889-y
– ident: 9619_CR3
– ident: 9619_CR7
  doi: 10.1007/978-3-319-16721-3.
– volume: 80
  start-page: 1123
  year: 2011
  ident: 9619_CR4
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-2010-02415-9
– volume: 20
  start-page: 745
  issue: 4
  year: 2013
  ident: 9619_CR22
  publication-title: Math. Res. Lett.
  doi: 10.4310/MRL.2013.v20.n4.a10
– ident: 9619_CR19
  doi: 10.1007/s10231-011-0238-6
– volume-title: Lie Groups. An Approach through Invariants and Representations
  year: 2007
  ident: 9619_CR21
– volume: 17
  start-page: 108
  year: 2018
  ident: 9619_CR23
  publication-title: J. Singul.
  doi: 10.5427/jsing.2018.17g
– ident: 9619_CR5
  doi: 10.1007/3-540-18170-9_156
– ident: 9619_CR13
  doi: 10.1007/BF02684802.
– ident: 9619_CR20
SSID ssj0015914
ssib031263371
Score 2.3564818
Snippet In earlier work, the second author showed that a closed subset of a polynomial functor can always be defined by finitely many polynomial equations. In...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 1567
SubjectTerms Algorithms
Applications of Mathematics
Computer Science
Economics
Linear and Multilinear Algebras
Math Applications in Computer Science
Mathematics
Mathematics and Statistics
Matrix Theory
Numerical Analysis
Parameterization
Polynomials
Title Implicitisation and Parameterisation in Polynomial Functors
URI https://link.springer.com/article/10.1007/s10208-023-09619-6
https://www.proquest.com/docview/3130125956
Volume 24
WOSCitedRecordID wos001060055800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1615-3383
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015914
  issn: 1615-3375
  databaseCode: RSV
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5aBfVgtSpWq-zBmwa2yWaT4EnEoqCl-KK3ZfMCQbbSrYL_3km626roQa-ZMCQzSeYL80LoKE0UVU5abEhMcSKJw4rRGGvNdOyE43EeupZc835fDIdyUCWFlXW0e-2SDC_1p2Q34l31hGLfpkTidBEtgbkTvmHD7d3jzHfAZKjo7aEMppSzKlXmZx5fzdEcY35ziwZr02v-b50baL1Cl9HZ9DhsogVbtFCzQppRdY9LGKqbOdRjLbRSpygDee1mVsy13EKnVyHq3Bc_CmqM8sJEg9xHdYVCz9PBpyIajJ7fPQtYQQ_Mpe_js40eehf355e46rmAdcLoBCfcWUKcUFJrriRnKrYyB21qmeZEs67h1jqeKN6VFv6ehibMCmlg0xxoju6gRjEq7C6KBIFHmBrqfAaKUgBNWapNN1GCGpOKtI2Oa9FnL9PSGtm8iLIXYgZCzIIQM5jdqbWTVdeszChYYEBo8Mdro5NaG3Py79z2_jZ9H60SADPTIL4OakzGr_YALes3kPz4MBy_D4xN0z8
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB58gXrwLT6q7sGbBrbJZrPBk4hFsS3FF96WzQsE2UpbBf-9k3TXquhBr0kIyUyS-cLMfANwmCaKKSctMTRmJJHUEcVZTLTmOnaZE3ERqpa0RbebPTzIXpUUNqyj3WuXZHipPyW7Ue-qp4z4MiWSpNMwm6DF8oz51zf3H74DLgOjt4cyhDHBq1SZn-f4ao4mGPObWzRYm9by_9a5AksVuoxOx8dhFaZsuQbLFdKMqns8xKa6mEPdtgbzdYoydi92Pshch-twchmizj35UVBjVJQm6hU-qisQPY8bH8uo139681PgClpoLn0dnw24a53fnl2QquYC0QlnI5IIZyl1mZJaCyUFV7GVBWpTy7SgmjeNsNaJRImmtPj3NCzhNpMGNy2wz7FNmCn7pd2CKKP4CDPDnM9AUQqhKU-1aSYqY8akWboNR7Xo8-cxtUY-IVH2QsxRiHkQYo6jG7V28uqaDXOGFhgRGv7xtuG41sak-_fZdv42_ADmL2477bx92b3ahQWKwGYc0NeAmdHgxe7BnH5FLQz2w1F8B3za1iM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB584ePgW3zbgzcN202apsGTqIuiLgs-8FaaFwhSxV0F_72TtHVV9CBeJyGkmaTzDTPzDcBumiimnLTE0JiRRFJHFGcx0Zrr2GVOxEXoWnIhut3s7k72PlXxh2z3JiRZ1TR4lqZy0HoyrvWp8I36sD1lxLcskSQdhfHEJ9J7f_3q9iOOwGVg9_awhjAmeF028_MaX03TEG9-C5EGy9OZ-_-e52G2Rp3RYXVNFmDEloswVyPQqH7ffRQ1TR4a2SJMNaXLODxz-UHy2l-Cg7OQje5JkYJ6o6I0Ua_w2V6BALoS3pdR7_HhzS-BO-igGfX9fZbhpnNyfXRK6l4MRCecDUginKXUZUpqLZQUXMVWFqhlLdOCat42wlonEiXa0qJPaljCbSYNfrTAMcdWYKx8LO0qRBnFnzMzzPnKFKUQsvJUm3aiMmZMmqVrsNeoIX-qKDfyIbmyP8QcDzEPh5jj7M1GU3n9_Po5Q8uMyA19vzXYbzQzHP59tfW_Td-Byd5xJ784655vwDRFvFPl-W3C2OD5xW7BhH5FJTxvh1v5DvIh3wc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Implicitisation+and+Parameterisation+in+Polynomial+Functors&rft.jtitle=Foundations+of+computational+mathematics&rft.au=Blatter%2C+Andreas&rft.au=Draisma%2C+Jan&rft.au=Ventura%2C+Emanuele&rft.date=2024-10-01&rft.issn=1615-3375&rft.eissn=1615-3383&rft.volume=24&rft.issue=5&rft.spage=1567&rft.epage=1593&rft_id=info:doi/10.1007%2Fs10208-023-09619-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10208_023_09619_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-3375&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-3375&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-3375&client=summon