Model Selection for Exponential Power Mixture Regression Models
Finite mixture of linear regression (FMLR) models are among the most exemplary statistical tools to deal with various heterogeneous data. In this paper, we introduce a new procedure to simultaneously determine the number of components and perform variable selection for the different regressions for...
Saved in:
| Published in: | Entropy (Basel, Switzerland) Vol. 26; no. 5; p. 422 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Switzerland
MDPI AG
01.05.2024
|
| Subjects: | |
| ISSN: | 1099-4300, 1099-4300 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Finite mixture of linear regression (FMLR) models are among the most exemplary statistical tools to deal with various heterogeneous data. In this paper, we introduce a new procedure to simultaneously determine the number of components and perform variable selection for the different regressions for FMLR models via an exponential power error distribution, which includes normal distributions and Laplace distributions as special cases. Under some regularity conditions, the consistency of order selection and the consistency of variable selection are established, and the asymptotic normality for the estimators of non-zero parameters is investigated. In addition, an efficient modified expectation-maximization (EM) algorithm and a majorization-maximization (MM) algorithm are proposed to implement the proposed optimization problem. Furthermore, we use the numerical simulations to demonstrate the finite sample performance of the proposed methodology. Finally, we apply the proposed approach to analyze a baseball salary data set. Results indicate that our proposed method obtains a smaller BIC value than the existing method. |
|---|---|
| AbstractList | Finite mixture of linear regression (FMLR) models are among the most exemplary statistical tools to deal with various heterogeneous data. In this paper, we introduce a new procedure to simultaneously determine the number of components and perform variable selection for the different regressions for FMLR models via an exponential power error distribution, which includes normal distributions and Laplace distributions as special cases. Under some regularity conditions, the consistency of order selection and the consistency of variable selection are established, and the asymptotic normality for the estimators of non-zero parameters is investigated. In addition, an efficient modified expectation-maximization (EM) algorithm and a majorization-maximization (MM) algorithm are proposed to implement the proposed optimization problem. Furthermore, we use the numerical simulations to demonstrate the finite sample performance of the proposed methodology. Finally, we apply the proposed approach to analyze a baseball salary data set. Results indicate that our proposed method obtains a smaller BIC value than the existing method. Finite mixture of linear regression (FMLR) models are among the most exemplary statistical tools to deal with various heterogeneous data. In this paper, we introduce a new procedure to simultaneously determine the number of components and perform variable selection for the different regressions for FMLR models via an exponential power error distribution, which includes normal distributions and Laplace distributions as special cases. Under some regularity conditions, the consistency of order selection and the consistency of variable selection are established, and the asymptotic normality for the estimators of non-zero parameters is investigated. In addition, an efficient modified expectation-maximization (EM) algorithm and a majorization-maximization (MM) algorithm are proposed to implement the proposed optimization problem. Furthermore, we use the numerical simulations to demonstrate the finite sample performance of the proposed methodology. Finally, we apply the proposed approach to analyze a baseball salary data set. Results indicate that our proposed method obtains a smaller BIC value than the existing method.Finite mixture of linear regression (FMLR) models are among the most exemplary statistical tools to deal with various heterogeneous data. In this paper, we introduce a new procedure to simultaneously determine the number of components and perform variable selection for the different regressions for FMLR models via an exponential power error distribution, which includes normal distributions and Laplace distributions as special cases. Under some regularity conditions, the consistency of order selection and the consistency of variable selection are established, and the asymptotic normality for the estimators of non-zero parameters is investigated. In addition, an efficient modified expectation-maximization (EM) algorithm and a majorization-maximization (MM) algorithm are proposed to implement the proposed optimization problem. Furthermore, we use the numerical simulations to demonstrate the finite sample performance of the proposed methodology. Finally, we apply the proposed approach to analyze a baseball salary data set. Results indicate that our proposed method obtains a smaller BIC value than the existing method. |
| Audience | Academic |
| Author | Liu, Jiangchuan Huang, Xiaowen Zou, Hang Jiang, Yunlu |
| Author_xml | – sequence: 1 givenname: Yunlu surname: Jiang fullname: Jiang, Yunlu – sequence: 2 givenname: Jiangchuan surname: Liu fullname: Liu, Jiangchuan – sequence: 3 givenname: Hang surname: Zou fullname: Zou, Hang – sequence: 4 givenname: Xiaowen surname: Huang fullname: Huang, Xiaowen |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38785671$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkd9rFDEQx4NUbHv64D8gC77ow7WTX5vkSUqpWmhR_PG8ZJPJkWNvcya7tP735nr1kCLzkGH4zHcy8z0lR2MakZDXFM44N3COrAUJgrFn5ISCMUvBAY7-yY_JaSlrAMYZbV-QY66Vlq2iJ-TDbfI4NN9xQDfFNDYh5ebqflsHjFO0Q_M13WFubuP9NGdsvuEqYyk78KGxvCTPgx0Kvnp8F-Tnx6sfl5-XN18-XV9e3CydkHxa0t4rBb4HYTjngioKvZFSY--Radt6q4KQwVjuIKAz3ujeBG5asL2gYPmCXO91fbLrbpvjxubfXbKxeyikvOpsnqIbsEMRBBhOnVZUBO8NY1K3xmmKqtc0VK13e61tTr9mLFO3icXhMNgR01w6Di1w1RqhKvr2CbpOcx7rppWSRggpDKvU2Z5a2To_jiFN2boaHjfR1VOGWOsXykhutKgHWJA3j7Jzv0F_2OevLxV4vwdcTqVkDAeEQrfzvDt4XtnzJ6yLk92ZWX8Rh_90_AF226mg |
| CitedBy_id | crossref_primary_10_29244_jcfcs_4_1_51_65 |
| Cites_doi | 10.1198/jasa.2009.0103 10.2307/2532881 10.1198/0003130042836 10.1162/neco.1991.3.1.79 10.1080/02664763.2021.1990225 10.1093/biomet/asm053 10.1198/016214501753382273 10.1080/03610918.2022.2077959 10.1016/0304-4076(73)90002-X 10.1002/0471721182 10.1111/insr.12349 10.1146/annurev-statistics-031017-100325 10.1080/10691898.1998.11910618 10.1198/016214507000000590 10.1201/9780203489437 10.1080/01621459.1972.10482378 10.1080/03610926.2019.1601222 10.1007/s00180-015-0596-4 10.1111/j.2517-6161.1977.tb01600.x |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION NPM 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO FR3 HCIFZ KR7 L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 DOA |
| DOI | 10.3390/e26050422 |
| DatabaseName | CrossRef PubMed Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest SciTech Premium Collection Technology Collection Materials Science & Engineering Database ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central Engineering Research Database SciTech Premium Collection Civil Engineering Abstracts ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database PubMed CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ (Directory of Open Access Journals) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 1099-4300 |
| ExternalDocumentID | oai_doaj_org_article_e4f40931c8714fdd9225869c81e7b81f A795398433 38785671 10_3390_e26050422 |
| Genre | Journal Article |
| GeographicLocations | Iran |
| GeographicLocations_xml | – name: Iran |
| GroupedDBID | 29G 2WC 5GY 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ACIWK ACUHS ADBBV AEGXH AENEX AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BGLVJ CCPQU CITATION CS3 DU5 E3Z ESX F5P GROUPED_DOAJ GX1 HCIFZ HH5 IAO ITC J9A KQ8 L6V M7S MODMG M~E OK1 OVT PGMZT PHGZM PHGZT PIMPY PQGLB PROAC PTHSS RNS RPM TR2 TUS XSB ~8M NPM 7TB 8FD ABUWG AZQEC DWQXO FR3 KR7 PKEHL PQEST PQQKQ PQUKI PRINS 7X8 PUEGO |
| ID | FETCH-LOGICAL-c453t-1bd770db04933341710b9558ebde28a6da7f45f9a3c0fec9d98b9f3960ab410a3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001233015600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1099-4300 |
| IngestDate | Fri Oct 03 12:28:09 EDT 2025 Fri Sep 05 13:08:08 EDT 2025 Fri Jul 25 12:00:57 EDT 2025 Tue Nov 04 18:14:34 EST 2025 Thu Apr 03 06:56:56 EDT 2025 Tue Nov 18 21:55:59 EST 2025 Sat Nov 29 07:15:35 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | exponential power distribution finite mixture of linear regression models variable selection modified EM algorithm |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c453t-1bd770db04933341710b9558ebde28a6da7f45f9a3c0fec9d98b9f3960ab410a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://doaj.org/article/e4f40931c8714fdd9225869c81e7b81f |
| PMID | 38785671 |
| PQID | 3059445492 |
| PQPubID | 2032401 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_e4f40931c8714fdd9225869c81e7b81f proquest_miscellaneous_3060376947 proquest_journals_3059445492 gale_infotracacademiconefile_A795398433 pubmed_primary_38785671 crossref_primary_10_3390_e26050422 crossref_citationtrail_10_3390_e26050422 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-05-01 |
| PublicationDateYYYYMMDD | 2024-05-01 |
| PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Entropy (Basel, Switzerland) |
| PublicationTitleAlternate | Entropy (Basel) |
| PublicationYear | 2024 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Quandt (ref_1) 1972; 67 Wang (ref_16) 2023; 50 Jiang (ref_13) 2016; 45 ref_18 Chen (ref_9) 2009; 104 ref_15 Zou (ref_23) 2008; 36 Dempster (ref_19) 1977; 39 Hunter (ref_20) 2004; 58 Wang (ref_11) 1996; 52 Wang (ref_24) 2007; 94 Jacobs (ref_3) 1991; 3 Yu (ref_17) 2020; 49 Khalili (ref_12) 2007; 102 Luo (ref_14) 2008; 46 Fan (ref_22) 2001; 96 Watnik (ref_25) 1998; 6 Yu (ref_8) 2020; 88 Goldfeld (ref_2) 1973; 1 Kobayashi (ref_21) 2016; 31 McLachlan (ref_7) 2019; 6 Peng (ref_10) 2017; 27 ref_5 ref_4 ref_6 |
| References_xml | – volume: 104 start-page: 187 year: 2009 ident: ref_9 article-title: Order selection in finite mixture models with a nonsmooth penalty publication-title: J. Am. Stat. Assoc. doi: 10.1198/jasa.2009.0103 – volume: 52 start-page: 381 year: 1996 ident: ref_11 article-title: Mixed Poisson regression models with covariate dependent rates publication-title: Biometrics doi: 10.2307/2532881 – volume: 58 start-page: 30 year: 2004 ident: ref_20 article-title: A tutorial on MM algorithms publication-title: Am. Stat. doi: 10.1198/0003130042836 – volume: 36 start-page: 1509 year: 2008 ident: ref_23 article-title: One-step sparse estimates in nonconcave penalized likelihood models publication-title: Ann. Stat. – volume: 3 start-page: 79 year: 1991 ident: ref_3 article-title: Adaptive mixtures of local experts publication-title: Neural Comput. doi: 10.1162/neco.1991.3.1.79 – volume: 50 start-page: 291 year: 2023 ident: ref_16 article-title: Component selection for exponential power mixture models publication-title: J. Appl. Stat. doi: 10.1080/02664763.2021.1990225 – volume: 27 start-page: 147 year: 2017 ident: ref_10 article-title: Model Selection for Gaussian Mixture Models publication-title: Stat. Sin. – volume: 45 start-page: 549 year: 2016 ident: ref_13 article-title: Robust variable selection for mixture linear regression models publication-title: Hacet. J. Math. Stat. – volume: 94 start-page: 553 year: 2007 ident: ref_24 article-title: Tuning parameter selectors for the smoothly clipped absolute deviation method publication-title: Biometrika doi: 10.1093/biomet/asm053 – ident: ref_18 – volume: 96 start-page: 1348 year: 2001 ident: ref_22 article-title: Variable selection via nonconcave penalized likelihood and its oracle properties publication-title: J. Am. Stat. Assoc. doi: 10.1198/016214501753382273 – ident: ref_15 doi: 10.1080/03610918.2022.2077959 – ident: ref_4 – volume: 1 start-page: 3 year: 1973 ident: ref_2 article-title: A Markov model for switching regressions publication-title: J. Econom. doi: 10.1016/0304-4076(73)90002-X – ident: ref_6 doi: 10.1002/0471721182 – volume: 88 start-page: 176 year: 2020 ident: ref_8 article-title: A selective overview and comparison of robust mixture regression estimators publication-title: Int. Stat. Rev. doi: 10.1111/insr.12349 – volume: 6 start-page: 355 year: 2019 ident: ref_7 article-title: Finite mixture models publication-title: Annu. Rev. Stat. Appl. doi: 10.1146/annurev-statistics-031017-100325 – volume: 46 start-page: 403 year: 2008 ident: ref_14 article-title: On mixture regression shrinkage and selection via the MR-Lasso publication-title: Int. J. Pure Appl. Math. – volume: 6 start-page: 1 year: 1998 ident: ref_25 article-title: Pay for play: Are baseball salaries based on performance? publication-title: J. Stat. Educ. doi: 10.1080/10691898.1998.11910618 – volume: 102 start-page: 1025 year: 2007 ident: ref_12 article-title: Variable selection in finite mixture of regression models publication-title: J. Am. Stat. Assoc. doi: 10.1198/016214507000000590 – ident: ref_5 doi: 10.1201/9780203489437 – volume: 67 start-page: 306 year: 1972 ident: ref_1 article-title: A new approach to estimating switching regressions publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1972.10482378 – volume: 49 start-page: 4347 year: 2020 ident: ref_17 article-title: A new model selection procedure for finite mixture regression models publication-title: Commun. Stat.-Theory Methods doi: 10.1080/03610926.2019.1601222 – volume: 31 start-page: 49 year: 2016 ident: ref_21 article-title: Skew exponential power stochastic volatility model for analysis of skewness, non-normal tails, quantiles and expectiles publication-title: Comput. Stat. doi: 10.1007/s00180-015-0596-4 – volume: 39 start-page: 1 year: 1977 ident: ref_19 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J. R. Stat. Soc. Ser. B (Methodol.) doi: 10.1111/j.2517-6161.1977.tb01600.x |
| SSID | ssj0023216 |
| Score | 2.335611 |
| Snippet | Finite mixture of linear regression (FMLR) models are among the most exemplary statistical tools to deal with various heterogeneous data. In this paper, we... |
| SourceID | doaj proquest gale pubmed crossref |
| SourceType | Open Website Aggregation Database Index Database Enrichment Source |
| StartPage | 422 |
| SubjectTerms | Algorithms Approximation Consistency exponential power distribution Feature selection finite mixture of linear regression models Lagrange multiplier Maximization Mixtures modified EM algorithm Normality Numerical analysis Optimization Parameter modification Regression models Simulation methods Sparsity Statistical analysis variable selection Variables |
| SummonAdditionalLinks | – databaseName: Engineering Database dbid: M7S link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB610EMvBdRXCkVpVam9RMRrJ7ZPiCJQDy1Cpa24WX4FIaHsdndB_HxmHG-qPsSl12QSOR7Py558H8C7YDHKYFivnAttJWxtKyuErryXBK8eA0_UCT8-y5MTdX6uT_OG2yK3Va58YnLUYeppj3yPE7CIIDyx_dnPilij6HQ1U2g8hHVCSWCpde9sLLj4hLUDmhDH0n4vUu5OmFe_xaAE1f-3Q_4jzUzh5njjfwe6CU9yolkeDCtjCx7E_insE_XZVXmWyG9QIyWmrOXR7WzaU9MQip8SaVr55fKWDhbKr_FiaJPty_Tg4hl8Pz76dvipyhQKlRcNX1bMBSnr4LAO4BwDFuYTTjeNii7EibJtsLITTact93UXvQ5aOd1xLGusE6y2_Dms9TiGl1CGUAcRayWF5UIJpYVnXgaLSYZVwukCPqwm1fiML040F1cG6wyafzPOfwFvR9HZAKrxL6GPpJlRgHCw04Xp_MJkszJRdFigcuax7hNdCBrdk2q1VyxKp1hXwHvSqyFrxcF4m386wE8i3CtzIHXDtRKcF7CzUqfJZrwwv3RZwJvxNhognarYPk6vSaat0UtrIQt4MSyZccxcSdW0kr26_-Xb8HiCudLQR7kDa8v5dXwNj_zN8nIx301r-g74Jf4i priority: 102 providerName: ProQuest |
| Title | Model Selection for Exponential Power Mixture Regression Models |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/38785671 https://www.proquest.com/docview/3059445492 https://www.proquest.com/docview/3060376947 https://doaj.org/article/e4f40931c8714fdd9225869c81e7b81f |
| Volume | 26 |
| WOSCitedRecordID | wos001233015600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ (Directory of Open Access Journals) customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: M~E dateStart: 19990101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: M7S dateStart: 19990301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: BENPR dateStart: 19990301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: PIMPY dateStart: 19990301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Na9VAEB-0evBSFL_S1kcUQS-hydtJdvckrbyiYB-hVXmelv1KKZS09L2WnvzbnUnygraCFy85ZCcwO7O78xt28huAt8FSlKGwnjkXqgxtbjOLqDPvJdOrxyC61gnfv8j5XC0Wuv6t1RfXhPX0wL3hdiM2lIKIwhOyxyYETQtQVdqrIkqnioZP31zqdTI1pFpiWlQ9j5CgpH43Mmpntqs_ok9H0n_3KL4FMLtAc_AYNgeEmO71mj2Be7F9Ch-4Z9lZetx1rSFTpoQ109nNxXnL1T4kXnO3s_Tw9IZvBNKjeNLXt7Zp9-HyGXw7mH39-Ckbeh9kHkuxygoXpMyDIwAvBEUaAgJOl6WKLsSpslWwssGy0Vb4vIleB62cbgTlI9ZhkVvxHDZa0uElpCHkAWOuJFqBCpVGX3gZLKEDq9DpBN6vbWL8QAzO_SnODCUIbD4zmi-BN6PoRc-G8TehfTbsKMAE1t0LcqsZ3Gr-5dYE3rFbDG8zUsbb4W8BmhITVpk9qUuhFQqRwM7ac2bYf0sjmIYGmX0ugdfjMO0cvg6xbTy_Ypkqp-NVo0zgRe_xUWehpCorWWz9j7lsw6MpQaG-THIHNlaXV_EVPPTXq9Pl5QTuy4WawIP92bw-mnTLeMIVqMf8_DmjkfrzYf3jF57h9eM |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbtRAEC2FgAQXFrE5BDAIBBcrtrvt7j6gKECiRJmMIhJQbk1vjiJFnsnMBMJP8Y1UeUMs4pYDV7tstd3Ptbir3wN44Q1GGQzribW-TLhJTWI4V4lzgujVg2eNdMKnkRiP5dGR2l-C7_1eGGqr7H1i46j9xNE_8jVGxCKc-MTWp2cJqUbR6movodHCYjd8-4ol2_zNznuc35d5vrV5-G476VQFEscLtkgy64VIvcXUmDH04RhirSoKGawPuTSlN6LiRaUMc2kVnPJKWlUxzPSN5VlqGN73ClzFNCJXTavgwVDgsTwrW_YixlS6FqhWII6tX2JeIw3wZwD4La1twtvWrf_txdyGm10iHW-0yL8DS6G-C-sk7XYaHzTiPoi4GFPyePNiOqmpKQrN90kULt47uaCFk_hDOG7bgOu4uXB-Dz5eypjvw3KNY3gIsfep5yGVghvGJZeKu8wJbzCJMpJbFcHrfhK16_jTScbjVGMdRfOth_mO4PlgOm1JQ_5m9JaQMBgQz3dzYDI71p3b0IFXWICzzGFdyyvvFbpfWSonsyCszKoIXhGONHkjHIwz3aYKfCTi9dIbQhVMSc5YBKs9fHTnpub6J3YieDacRgdDq0amDpNzsilTjEKKiwgetBAdxsykkEUpspV_3_wpXN8-3Bvp0c549xHcyDEvbHtGV2F5MTsPj-Ga-7I4mc-eNN9TDJ8vG6c_ALHBW2Q |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbtRAEC2FCUJcWMRmCGAQCC7W2O62u_sQRYFkxCjJaMSmcDK9OYoUeYaZCYRf4-tS5Q2xiFsOXO2y1XY_1-Kufg_gmdMYZTCsR8a4POI61pHmXEXWCqJX947V0gkf98VkIg8P1XQNfnR7YaitsvOJtaN2M0v_yIeMiEU48YkNy7YtYroz2pp_iUhBilZaOzmNBiJ7_vs3LN-Wm-MdnOvnaTraff_6TdQqDESWZ2wVJcYJETuDaTJj6M8x3BqVZdIb51Opc6dFybNSaWbj0lvllDSqZJj1a8OTWDO87yVYx5ScpwNYn44Ppp_6co-lSd5wGTGm4qGnyoEYt36JgLVQwJ_h4Lcktw52o-v_82u6AdfaFDvcbr6Jm7Dmq1uwRaJvJ-G7WvYHsRhish7uns1nFbVLofmU5OLCg-MzWlIJ3_qjpkG4CusLl7fhw4WM-Q4MKhzDPQidix33sRRcMy65VNwmVjiN6ZWW3KgAXnYTWtiWWZ0EPk4KrLBo7ot-7gN42pvOGzqRvxm9IlT0BsQAXh-YLY6K1qEUnpdYmrPEYsXLS-cUOmaZKysTL4xMygBeEKYK8lM4GKvb7Rb4SMT4VWwLlTElOWMBbHRQKloHtix-4iiAJ_1pdD20nqQrPzslmzzG-KS4COBuA9d-zEwKmeUiuf_vmz-GKwjPYn882XsAV1NMGJtm0g0YrBan_iFctl9Xx8vFo_bjCuHzRQP1HPwmZZo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Model+Selection+for+Exponential+Power+Mixture+Regression+Models&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Jiang%2C+Yunlu&rft.au=Liu%2C+Jiangchuan&rft.au=Zou%2C+Hang&rft.au=Huang%2C+Xiaowen&rft.date=2024-05-01&rft.issn=1099-4300&rft.eissn=1099-4300&rft.volume=26&rft.issue=5&rft.spage=422&rft_id=info:doi/10.3390%2Fe26050422&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_e26050422 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon |