Palmitic acid promotes endothelial-to-mesenchymal transition via activation of the cytosolic DNA-sensing cGAS-STING pathway
Elevated levels of plasma free fatty acids (FFAs) lead to endothelial dysfunction, a process that is involved in the pathogenesis of atherosclerosis. Endothelial-to-mesenchymal transformation (EndMT) has been reported to accelerate endothelial dysfunction during the process of atherosclerosis. Howev...
Uložené v:
| Vydané v: | Archives of biochemistry and biophysics Ročník 727; s. 109321 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
Elsevier Inc
30.09.2022
|
| Predmet: | |
| ISSN: | 0003-9861, 1096-0384, 1096-0384 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Elevated levels of plasma free fatty acids (FFAs) lead to endothelial dysfunction, a process that is involved in the pathogenesis of atherosclerosis. Endothelial-to-mesenchymal transformation (EndMT) has been reported to accelerate endothelial dysfunction during the process of atherosclerosis. However, the underlying mechanisms of EndMT remain poorly understood. The present study aimed to investigate the role of the cytosolic DNA-sensing cyclic GMP-AMP synthase-stimulator interferon gene (cGAS-STING) pathway in palmitic acid (PA)-induced EndMT. Human aortic endothelial cells (HAECs) were exposed to different concentrations of PA, and subsequently its effects on EndMT and the cGAS-STING pathway were assessed. To investigate the role of cGAS-STING pathway on PA-induced EndMT, RNA interference was used to knockdown the expression of cGAS in HAECs prior to their exposure to PA. First, it was observed that PA reduced cell viability and intracellular nitric oxide production, and increased migratory capacity of the HAECs as well as the cellular oxidative stress response, leading to EndMT. Moreover, it was observed that the cGAS-STING pathway was activated in PA-exposed primary HAECs. Activating cGAS-STING pathway via mtDNA directing lead to EndMT in HAECs. Interestingly, cGAS knockdown by RNA interference attenuated PA-induced inflammation, oxidative stress and EndMT in HAECs. Taken together, the results of the present study suggested that the cytosolic DNA-sensing cGAS-STING pathway may have important roles in PA-induced EndMT in endothelial cells. |
|---|---|
| AbstractList | Elevated levels of plasma free fatty acids (FFAs) lead to endothelial dysfunction, a process that is involved in the pathogenesis of atherosclerosis. Endothelial-to-mesenchymal transformation (EndMT) has been reported to accelerate endothelial dysfunction during the process of atherosclerosis. However, the underlying mechanisms of EndMT remain poorly understood. The present study aimed to investigate the role of the cytosolic DNA-sensing cyclic GMP-AMP synthase-stimulator interferon gene (cGAS-STING) pathway in palmitic acid (PA)-induced EndMT. Human aortic endothelial cells (HAECs) were exposed to different concentrations of PA, and subsequently its effects on EndMT and the cGAS-STING pathway were assessed. To investigate the role of cGAS-STING pathway on PA-induced EndMT, RNA interference was used to knockdown the expression of cGAS in HAECs prior to their exposure to PA. First, it was observed that PA reduced cell viability and intracellular nitric oxide production, and increased migratory capacity of the HAECs as well as the cellular oxidative stress response, leading to EndMT. Moreover, it was observed that the cGAS-STING pathway was activated in PA-exposed primary HAECs. Activating cGAS-STING pathway via mtDNA directing lead to EndMT in HAECs. Interestingly, cGAS knockdown by RNA interference attenuated PA-induced inflammation, oxidative stress and EndMT in HAECs. Taken together, the results of the present study suggested that the cytosolic DNA-sensing cGAS-STING pathway may have important roles in PA-induced EndMT in endothelial cells. Elevated levels of plasma free fatty acids (FFAs) lead to endothelial dysfunction, a process that is involved in the pathogenesis of atherosclerosis. Endothelial-to-mesenchymal transformation (EndMT) has been reported to accelerate endothelial dysfunction during the process of atherosclerosis. However, the underlying mechanisms of EndMT remain poorly understood. The present study aimed to investigate the role of the cytosolic DNA-sensing cyclic GMP-AMP synthase-stimulator interferon gene (cGAS-STING) pathway in palmitic acid (PA)-induced EndMT. Human aortic endothelial cells (HAECs) were exposed to different concentrations of PA, and subsequently its effects on EndMT and the cGAS-STING pathway were assessed. To investigate the role of cGAS-STING pathway on PA-induced EndMT, RNA interference was used to knockdown the expression of cGAS in HAECs prior to their exposure to PA. First, it was observed that PA reduced cell viability and intracellular nitric oxide production, and increased migratory capacity of the HAECs as well as the cellular oxidative stress response, leading to EndMT. Moreover, it was observed that the cGAS-STING pathway was activated in PA-exposed primary HAECs. Activating cGAS-STING pathway via mtDNA directing lead to EndMT in HAECs. Interestingly, cGAS knockdown by RNA interference attenuated PA-induced inflammation, oxidative stress and EndMT in HAECs. Taken together, the results of the present study suggested that the cytosolic DNA-sensing cGAS-STING pathway may have important roles in PA-induced EndMT in endothelial cells.Elevated levels of plasma free fatty acids (FFAs) lead to endothelial dysfunction, a process that is involved in the pathogenesis of atherosclerosis. Endothelial-to-mesenchymal transformation (EndMT) has been reported to accelerate endothelial dysfunction during the process of atherosclerosis. However, the underlying mechanisms of EndMT remain poorly understood. The present study aimed to investigate the role of the cytosolic DNA-sensing cyclic GMP-AMP synthase-stimulator interferon gene (cGAS-STING) pathway in palmitic acid (PA)-induced EndMT. Human aortic endothelial cells (HAECs) were exposed to different concentrations of PA, and subsequently its effects on EndMT and the cGAS-STING pathway were assessed. To investigate the role of cGAS-STING pathway on PA-induced EndMT, RNA interference was used to knockdown the expression of cGAS in HAECs prior to their exposure to PA. First, it was observed that PA reduced cell viability and intracellular nitric oxide production, and increased migratory capacity of the HAECs as well as the cellular oxidative stress response, leading to EndMT. Moreover, it was observed that the cGAS-STING pathway was activated in PA-exposed primary HAECs. Activating cGAS-STING pathway via mtDNA directing lead to EndMT in HAECs. Interestingly, cGAS knockdown by RNA interference attenuated PA-induced inflammation, oxidative stress and EndMT in HAECs. Taken together, the results of the present study suggested that the cytosolic DNA-sensing cGAS-STING pathway may have important roles in PA-induced EndMT in endothelial cells. |
| ArticleNumber | 109321 |
| Author | Cheng, Zhe Huang, Bi Guo, Yongzheng Liu, Qian Luo, Suxin |
| Author_xml | – sequence: 1 givenname: Qian surname: Liu fullname: Liu, Qian organization: Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China – sequence: 2 givenname: Zhe surname: Cheng fullname: Cheng, Zhe organization: Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China – sequence: 3 givenname: Bi surname: Huang fullname: Huang, Bi organization: Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China – sequence: 4 givenname: Suxin surname: Luo fullname: Luo, Suxin email: luosuxin@hospital.cqmu.edu.cn organization: Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China – sequence: 5 givenname: Yongzheng orcidid: 0000-0002-5268-9036 surname: Guo fullname: Guo, Yongzheng email: gyz_cardio@hospital.cqmu.edu.cn organization: Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35697075$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkc1uEzEURi1URNPCA7BBXrJxans8noxYRQXSSlVBallb_rkmjjzjMHaCIl4etyksWJSV75XOuZK_7wydjGkEhN4yOmeUyYvNXBsz55TzuvcNZy_QrA6S0GYhTtCMUtqQfiHZKTrLeUMpY0LyV-i0aWXf0a6doV9fdRxCCRZrGxzeTmlIBTKG0aWyhhh0JCWRATKMdn0YdMRl0mOuShrxPujqlbDXj2vyuDrYHkrKKdabH2-XpIo5jN-xXS3vyN399e0Kb3VZ_9SH1-il1zHDm6f3HH37_On-8orcfFldXy5viBUtL0RIZowwnW064dvee83BcCEb0VKnjdfMGW6pl87pykoQtucd9xLcQvfMNOfo_fFu_d2PHeSihpAtxKhHSLuseMcWXDAq-v-jspNtW2FZ0XdP6M4M4NR2CoOeDupPthVgR8BOKecJ_F-EUfXQn9qo2p966E8d-6tO949jQ3kMt6Ye4rPmh6MJNcl9gEllG2pn4MIEtiiXwjP2b3AMtTQ |
| CitedBy_id | crossref_primary_10_3390_biomedicines12020339 crossref_primary_10_1007_s00011_025_01993_x crossref_primary_10_1016_j_intimp_2025_114449 crossref_primary_10_1186_s12872_025_04543_9 crossref_primary_10_3389_fcvm_2025_1550930 crossref_primary_10_1016_j_jns_2025_123620 crossref_primary_10_1016_j_intimp_2025_115375 crossref_primary_10_3389_fimmu_2023_1275408 crossref_primary_10_1111_jcmm_18402 crossref_primary_10_1002_advs_202412895 crossref_primary_10_1161_JAHA_123_030084 crossref_primary_10_3389_fcvm_2022_965726 crossref_primary_10_1038_s41440_023_01463_z crossref_primary_10_3390_antiox13121486 crossref_primary_10_3390_biomedicines11092579 crossref_primary_10_4239_wjd_v15_i10_2041 crossref_primary_10_3233_CH_242230 crossref_primary_10_3389_fimmu_2024_1452678 crossref_primary_10_1016_j_pharmthera_2024_108653 |
| Cites_doi | 10.1038/ncomms11853 10.3389/fcvm.2020.00053 10.3390/biomedicines8120639 10.1016/j.immuni.2015.10.018 10.1016/0012-1606(78)90218-X 10.1126/scisignal.2005189 10.1007/s10456-018-9639-0 10.1073/pnas.1708744114 10.1161/ATVBAHA.121.313788 10.1002/aja.1001480108 10.1172/JCI82719 10.1186/s12929-017-0357-5 10.1038/s41576-019-0151-1 10.1152/ajpheart.00097.2020 10.1042/BSR20193431 10.1161/CIRCULATIONAHA.114.013048 10.1155/2018/5082817 10.1152/ajpendo.00155.2020 10.3389/fimmu.2018.01985 10.1002/dvdy.24589 10.3389/fphys.2017.00902 10.1038/nm.4428 10.1038/ni.3558 10.1038/s41569-018-0023-y 10.18632/aging.202491 10.1016/j.cell.2020.09.020 10.1016/j.jacc.2018.09.089 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Inc. Copyright © 2022 Elsevier Inc. All rights reserved. |
| Copyright_xml | – notice: 2022 Elsevier Inc. – notice: Copyright © 2022 Elsevier Inc. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
| DOI | 10.1016/j.abb.2022.109321 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology Chemistry Biology |
| EISSN | 1096-0384 |
| ExternalDocumentID | 35697075 10_1016_j_abb_2022_109321 S0003986122002053 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFRF ABGSF ABJNI ABMAC ABPPZ ABUDA ABYKQ ACDAQ ACGFO ACGFS ACNCT ACRLP ADBBV ADEZE ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AGUBO AGYEJ AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DM4 DOVZS EBS EFBJH EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA HLW IH2 IHE J1W KOM L7B LG5 LX2 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPCBC SSU SSZ T5K TWZ WH7 ~02 ~G- .55 .GJ .HR 3O- 53G 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABUFD ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADFGL ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGHFR AGQPQ AGRDE AHHHB AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CAG CITATION COF EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ K-O MVM NEJ OHT R2- SBG SEW UQL VH1 WUQ X7M XOL XPP YYP ZGI ZMT ZXP ~HD ~KM CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c452t-461bb4b7c374f59ffa2eb2463450dabfa1db2c0f6dda4616e4c9272f6ed8a91b3 |
| ISICitedReferencesCount | 22 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000861387300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0003-9861 1096-0384 |
| IngestDate | Sat Sep 27 18:41:29 EDT 2025 Thu Oct 02 07:03:35 EDT 2025 Sat Nov 01 14:17:00 EDT 2025 Sat Nov 29 07:31:23 EST 2025 Tue Nov 18 21:51:11 EST 2025 Fri Feb 23 02:39:36 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Human aortic endothelial cells Endothelial-to-mesenchymal transformation Palmitic acid cGAS-STING pathway |
| Language | English |
| License | Copyright © 2022 Elsevier Inc. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c452t-461bb4b7c374f59ffa2eb2463450dabfa1db2c0f6dda4616e4c9272f6ed8a91b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-5268-9036 |
| PMID | 35697075 |
| PQID | 2676552416 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2718241049 proquest_miscellaneous_2676552416 pubmed_primary_35697075 crossref_primary_10_1016_j_abb_2022_109321 crossref_citationtrail_10_1016_j_abb_2022_109321 elsevier_sciencedirect_doi_10_1016_j_abb_2022_109321 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-09-30 |
| PublicationDateYYYYMMDD | 2022-09-30 |
| PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-30 day: 30 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Archives of biochemistry and biophysics |
| PublicationTitleAlternate | Arch Biochem Biophys |
| PublicationYear | 2022 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Zhao, Liu, Liu, Suo, Lu (bib26) 2020; 40 Xue, Guo, Zou, Gong, Wu, Yi, Jia, Zhao, Shi, Li, Yuan, Liu, Gao, Li, Liu, Xu, Zhang, Liang, Li (bib5) 2018 Evrard, Lecce, Michelis, Nomura-Kitabayashi, Pandey, Purushothaman, D'Escamard, Li, Hadri, Fujitani, Moreno, Benard, Rimmele, Cohain, Mecham, Randolph, Nabel, Hajjar, Fuster, Boehm, Kovacic (bib9) 2016; 7 Chen, Schwartz, Simons (bib12) 2020; 7 Zhang, Meng, Han, Shen, Li, Hakim, Zhang, Lu, Rong, Lai (bib29) 2015; 43 Yun, Kook, Yoo, Kim, Lee, Kim, Lee (bib24) 2020; 8 Man, Sanchez, Ten, Baker (bib20) 2019; 22 Chen, Schwartz, Simons (bib21) 2020; 7 Markwald, Fitzharris, Manasek (bib7) 1977; 148 Markwald, Fitzharris, Bank, Bernanke (bib8) 1978; 62 King, Aguirre, Ye, Sun, Roh, Ng, Kohler, Arlauckas, Iwamoto, Savol, Sadreyev, Kelly, Fitzgibbons, Fitzgerald, Mitchison, Libby, Nahrendorf, Weissleder (bib31) 2017 Dec; 23 Chen, Qin, Baeyens, Li, Afolabi, Budatha, Tellides, Schwartz, Simons (bib14) 2015; 125 Gong, Lei, Liu, Tan, Li, Wang, Xu, Cai, Du, Xu, Zhou, Han, Sun, Qiu (bib18) 2019; 11 Evrard, Lecce, Michelis, Nomura-Kitabayashi, Pandey, Purushothaman, D'Escamard, Li, Hadri, Fujitani, Moreno, Benard, Rimmele, Cohain, Mecham, Randolph, Nabel, Hajjar, Fuster, Boehm, Kovacic (bib27) 2016; 7 Lu, Chen, Xia, Ye, Cao, Hu (bib30) 2021; 13 Motwani, Pesiridis, Fitzgerald (bib16) 2019; 20 Casey (bib1) 2004; 65 Gonzalez, Medici (bib13) 2014; 7 Carta, Murru, Banni, Manca (bib6) 2017; 8 Kovacic, Dimmeler, Harvey, Finkel, Aikawa, Krenning, Baker (bib22) 2019; 73 Bai, Cervantes, Liu, He, Zhou, Zhang, Cai, Yin, Hu, Li, Chen, Gao, Wang, O'Connor, Xu, Liu, Dong, Liu (bib28) 2017; 114 Chen, Qin, Baeyens, Li, Afolabi, Budatha, Tellides, Schwartz, Simons (bib25) 2015; 125 Thuan, Zayed, Eid, Abou-Saleh, Nasrallah, Mangoni, Pintus (bib10) 2018; 9 Drosatos, Schulze (bib4) 2014; 130 Li, Lui, Zhou (bib23) 2018; 15 Hu, Cui, Wu, Li, Su, Lian, Chen (bib32) 2020 Jun 1; 318 Sanchez-Duffhues, Garcia, Ten (bib11) 2018; 247 Chen, Sun, Chen (bib15) 2016; 17 Alvandi, Bischoff (bib19) 2021; 41 Luo, Li, Liu, Yuan, Zhu, Li, Liu, Lu, Cheng, Chen (bib2) 2020; 319 Yu, Davidson, Harapas, Hilton, Mlodzianoski, Laohamonthonkul, Louis, Low, Moecking, De Nardo, Balka, Calleja, Moghaddas, Ni, McLean, Samson, Tyebji, Tonkin, Bye, Turner, Pepin, Gantier, Rogers, McArthur, Crouch, Masters (bib17) 2020; 183 Ghosh, Gao, Thakur, Siu, Lai (bib3) 2017; 24 King (10.1016/j.abb.2022.109321_bib31) 2017; 23 Gong (10.1016/j.abb.2022.109321_bib18) 2019; 11 Zhang (10.1016/j.abb.2022.109321_bib29) 2015; 43 Thuan (10.1016/j.abb.2022.109321_bib10) 2018; 9 Lu (10.1016/j.abb.2022.109321_bib30) 2021; 13 Casey (10.1016/j.abb.2022.109321_bib1) 2004; 65 Carta (10.1016/j.abb.2022.109321_bib6) 2017; 8 Markwald (10.1016/j.abb.2022.109321_bib8) 1978; 62 Drosatos (10.1016/j.abb.2022.109321_bib4) 2014; 130 Alvandi (10.1016/j.abb.2022.109321_bib19) 2021; 41 Chen (10.1016/j.abb.2022.109321_bib15) 2016; 17 Luo (10.1016/j.abb.2022.109321_bib2) 2020; 319 Evrard (10.1016/j.abb.2022.109321_bib27) 2016; 7 Evrard (10.1016/j.abb.2022.109321_bib9) 2016; 7 Man (10.1016/j.abb.2022.109321_bib20) 2019; 22 Li (10.1016/j.abb.2022.109321_bib23) 2018; 15 Chen (10.1016/j.abb.2022.109321_bib14) 2015; 125 Yun (10.1016/j.abb.2022.109321_bib24) 2020; 8 Markwald (10.1016/j.abb.2022.109321_bib7) 1977; 148 Hu (10.1016/j.abb.2022.109321_bib32) 2020; 318 Chen (10.1016/j.abb.2022.109321_bib12) 2020; 7 Sanchez-Duffhues (10.1016/j.abb.2022.109321_bib11) 2018; 247 Ghosh (10.1016/j.abb.2022.109321_bib3) 2017; 24 Chen (10.1016/j.abb.2022.109321_bib21) 2020; 7 Chen (10.1016/j.abb.2022.109321_bib25) 2015; 125 Gonzalez (10.1016/j.abb.2022.109321_bib13) 2014; 7 Xue (10.1016/j.abb.2022.109321_bib5) 2018 Yu (10.1016/j.abb.2022.109321_bib17) 2020; 183 Motwani (10.1016/j.abb.2022.109321_bib16) 2019; 20 Kovacic (10.1016/j.abb.2022.109321_bib22) 2019; 73 Bai (10.1016/j.abb.2022.109321_bib28) 2017; 114 Zhao (10.1016/j.abb.2022.109321_bib26) 2020; 40 |
| References_xml | – volume: 8 start-page: 902 year: 2017 ident: bib6 article-title: Palmitic acid: physiological role, metabolism and nutritional implications publication-title: Front. Physiol. – volume: 41 start-page: 2357 year: 2021 end-page: 2369 ident: bib19 article-title: Endothelial-mesenchymal transition in cardiovascular disease publication-title: Arterioscler. Thromb. Vasc. Biol. – volume: 65 start-page: 27 year: 2004 end-page: 35 ident: bib1 article-title: Dyslipidemia and atypical antipsychotic drugs publication-title: J. Clin. Psychiatr. – volume: 15 start-page: 445 year: 2018 end-page: 456 ident: bib23 article-title: Reassessing endothelial-to-mesenchymal transition in cardiovascular diseases publication-title: Nat. Rev. Cardiol. – volume: 7 start-page: 53 year: 2020 ident: bib12 article-title: Endothelial-to-Mesenchymal transition, vascular inflammation, and atherosclerosis publication-title: Front. Cardiovasc. Med. – volume: 7 start-page: 53 year: 2020 ident: bib21 article-title: Endothelial-to-Mesenchymal transition, vascular inflammation, and atherosclerosis publication-title: Front. Cardiovasc. Med. – volume: 318 start-page: H1525 year: 2020 Jun 1 end-page: H1537 ident: bib32 article-title: Cytosolic DNA sensor cGAS plays an essential pathogenetic role in pressure overload-induced heart failure publication-title: Am. J. Physiol. Heart Circ. Physiol. – volume: 7 year: 2016 ident: bib9 article-title: Endothelial to mesenchymal transition is common in atherosclerotic lesions and is associated with plaque instability publication-title: Nat. Commun. – volume: 114 start-page: 12196 year: 2017 end-page: 12201 ident: bib28 article-title: DsbA-L prevents obesity-induced inflammation and insulin resistance by suppressing the mtDNA release-activated cGAS-cGAMP-STING pathway publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 125 start-page: 4514 year: 2015 end-page: 4528 ident: bib14 article-title: Endothelial-to-mesenchymal transition drives atherosclerosis progression publication-title: J. Clin. Invest. – volume: 130 start-page: 1775 year: 2014 end-page: 1777 ident: bib4 article-title: Savings precede spending: fatty acid utilization relies on triglyceride formation for cardiac energetics publication-title: Circulation – year: 2018 ident: bib5 article-title: Evodiamine attenuates P2X7-mediated inflammatory injury of human umbilical vein endothelial cells exposed to high free fatty acids publication-title: Oxid. Med. Cell. Longev. – volume: 43 start-page: 1137 year: 2015 end-page: 1147 ident: bib29 article-title: Mitochondrial DNA-LL-37 complex promotes atherosclerosis by escaping from autophagic recognition publication-title: Immunity – volume: 247 start-page: 492 year: 2018 end-page: 508 ident: bib11 article-title: Endothelial-to-mesenchymal transition in cardiovascular diseases: developmental signaling pathways gone awry publication-title: Dev. Dynam. – volume: 17 start-page: 1142 year: 2016 end-page: 1149 ident: bib15 article-title: Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing publication-title: Nat. Immunol. – volume: 319 start-page: E961 year: 2020 end-page: E980 ident: bib2 article-title: Mesenchymal stem cells alleviate palmitic acid-induced endothelial-to-mesenchymal transition by suppressing endoplasmic reticulum stress publication-title: Am. J. Physiol. Endocrinol. Metab. – volume: 125 start-page: 4514 year: 2015 end-page: 4528 ident: bib25 article-title: Endothelial-to-mesenchymal transition drives atherosclerosis progression publication-title: J. Clin. Invest. – volume: 11 start-page: 2140 year: 2019 end-page: 2154 ident: bib18 article-title: Vaccarin prevents ox-LDL-induced HUVEC EndMT, inflammation and apoptosis by suppressing ROS/p38 MAPK signaling publication-title: Am. J. Transl. Res. – volume: 7 year: 2014 ident: bib13 article-title: Signaling mechanisms of the epithelial-mesenchymal transition publication-title: Sci. Signal. – volume: 62 start-page: 292 year: 1978 end-page: 316 ident: bib8 article-title: Structural analyses on the matrical organization of glycosaminoglycans in developing endocardial cushions publication-title: Dev. Biol. – volume: 23 start-page: 1481 year: 2017 Dec end-page: 1487 ident: bib31 article-title: IRF3 and type I interferons fuel a fatal response to myocardial infarction publication-title: Nat. Med. – volume: 13 start-page: 5650 year: 2021 end-page: 5673 ident: bib30 article-title: Synergistic inflammatory signaling by cGAS may be involved in the development of atherosclerosis publication-title: Aging (Albany NY) – volume: 20 start-page: 657 year: 2019 end-page: 674 ident: bib16 article-title: DNA sensing by the cGAS-STING pathway in health and disease publication-title: Nat. Rev. Genet. – volume: 24 start-page: 50 year: 2017 ident: bib3 article-title: Role of free fatty acids in endothelial dysfunction publication-title: J. Biomed. Sci. – volume: 40 year: 2020 ident: bib26 article-title: Naringin protects endothelial cells from apoptosis and inflammation by regulating the Hippo-YAP Pathway publication-title: Biosci. Rep. – volume: 73 start-page: 190 year: 2019 end-page: 209 ident: bib22 article-title: Endothelial to mesenchymal transition in cardiovascular disease: JACC state-of-the-art review publication-title: J. Am. Coll. Cardiol. – volume: 148 start-page: 85 year: 1977 end-page: 119 ident: bib7 article-title: Structural development of endocardial cushions publication-title: Am. J. Anat. – volume: 22 start-page: 3 year: 2019 end-page: 13 ident: bib20 article-title: The therapeutic potential of targeting the endothelial-to-mesenchymal transition publication-title: Angiogenesis – volume: 7 year: 2016 ident: bib27 article-title: Endothelial to mesenchymal transition is common in atherosclerotic lesions and is associated with plaque instability publication-title: Nat. Commun. – volume: 8 year: 2020 ident: bib24 article-title: Endothelial to mesenchymal transition in pulmonary vascular diseases publication-title: Biomedicines – volume: 9 start-page: 1985 year: 2018 ident: bib10 article-title: A potential link between oxidative stress and endothelial-to-mesenchymal transition in systemic sclerosis publication-title: Front. Immunol. – volume: 183 start-page: 636 year: 2020 end-page: 649 ident: bib17 article-title: TDP-43 triggers mitochondrial DNA release via mPTP to activate cGAS/STING in ALS publication-title: Cell – volume: 7 year: 2016 ident: 10.1016/j.abb.2022.109321_bib9 article-title: Endothelial to mesenchymal transition is common in atherosclerotic lesions and is associated with plaque instability publication-title: Nat. Commun. doi: 10.1038/ncomms11853 – volume: 7 start-page: 53 year: 2020 ident: 10.1016/j.abb.2022.109321_bib12 article-title: Endothelial-to-Mesenchymal transition, vascular inflammation, and atherosclerosis publication-title: Front. Cardiovasc. Med. doi: 10.3389/fcvm.2020.00053 – volume: 8 year: 2020 ident: 10.1016/j.abb.2022.109321_bib24 article-title: Endothelial to mesenchymal transition in pulmonary vascular diseases publication-title: Biomedicines doi: 10.3390/biomedicines8120639 – volume: 43 start-page: 1137 year: 2015 ident: 10.1016/j.abb.2022.109321_bib29 article-title: Mitochondrial DNA-LL-37 complex promotes atherosclerosis by escaping from autophagic recognition publication-title: Immunity doi: 10.1016/j.immuni.2015.10.018 – volume: 62 start-page: 292 year: 1978 ident: 10.1016/j.abb.2022.109321_bib8 article-title: Structural analyses on the matrical organization of glycosaminoglycans in developing endocardial cushions publication-title: Dev. Biol. doi: 10.1016/0012-1606(78)90218-X – volume: 7 year: 2014 ident: 10.1016/j.abb.2022.109321_bib13 article-title: Signaling mechanisms of the epithelial-mesenchymal transition publication-title: Sci. Signal. doi: 10.1126/scisignal.2005189 – volume: 22 start-page: 3 year: 2019 ident: 10.1016/j.abb.2022.109321_bib20 article-title: The therapeutic potential of targeting the endothelial-to-mesenchymal transition publication-title: Angiogenesis doi: 10.1007/s10456-018-9639-0 – volume: 114 start-page: 12196 year: 2017 ident: 10.1016/j.abb.2022.109321_bib28 article-title: DsbA-L prevents obesity-induced inflammation and insulin resistance by suppressing the mtDNA release-activated cGAS-cGAMP-STING pathway publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1708744114 – volume: 41 start-page: 2357 year: 2021 ident: 10.1016/j.abb.2022.109321_bib19 article-title: Endothelial-mesenchymal transition in cardiovascular disease publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/ATVBAHA.121.313788 – volume: 148 start-page: 85 year: 1977 ident: 10.1016/j.abb.2022.109321_bib7 article-title: Structural development of endocardial cushions publication-title: Am. J. Anat. doi: 10.1002/aja.1001480108 – volume: 65 start-page: 27 issue: 18 year: 2004 ident: 10.1016/j.abb.2022.109321_bib1 article-title: Dyslipidemia and atypical antipsychotic drugs publication-title: J. Clin. Psychiatr. – volume: 125 start-page: 4514 year: 2015 ident: 10.1016/j.abb.2022.109321_bib14 article-title: Endothelial-to-mesenchymal transition drives atherosclerosis progression publication-title: J. Clin. Invest. doi: 10.1172/JCI82719 – volume: 7 year: 2016 ident: 10.1016/j.abb.2022.109321_bib27 article-title: Endothelial to mesenchymal transition is common in atherosclerotic lesions and is associated with plaque instability publication-title: Nat. Commun. doi: 10.1038/ncomms11853 – volume: 24 start-page: 50 year: 2017 ident: 10.1016/j.abb.2022.109321_bib3 article-title: Role of free fatty acids in endothelial dysfunction publication-title: J. Biomed. Sci. doi: 10.1186/s12929-017-0357-5 – volume: 20 start-page: 657 year: 2019 ident: 10.1016/j.abb.2022.109321_bib16 article-title: DNA sensing by the cGAS-STING pathway in health and disease publication-title: Nat. Rev. Genet. doi: 10.1038/s41576-019-0151-1 – volume: 318 start-page: H1525 issue: 6 year: 2020 ident: 10.1016/j.abb.2022.109321_bib32 article-title: Cytosolic DNA sensor cGAS plays an essential pathogenetic role in pressure overload-induced heart failure publication-title: Am. J. Physiol. Heart Circ. Physiol. doi: 10.1152/ajpheart.00097.2020 – volume: 40 year: 2020 ident: 10.1016/j.abb.2022.109321_bib26 article-title: Naringin protects endothelial cells from apoptosis and inflammation by regulating the Hippo-YAP Pathway publication-title: Biosci. Rep. doi: 10.1042/BSR20193431 – volume: 130 start-page: 1775 year: 2014 ident: 10.1016/j.abb.2022.109321_bib4 article-title: Savings precede spending: fatty acid utilization relies on triglyceride formation for cardiac energetics publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.114.013048 – year: 2018 ident: 10.1016/j.abb.2022.109321_bib5 article-title: Evodiamine attenuates P2X7-mediated inflammatory injury of human umbilical vein endothelial cells exposed to high free fatty acids publication-title: Oxid. Med. Cell. Longev. doi: 10.1155/2018/5082817 – volume: 319 start-page: E961 year: 2020 ident: 10.1016/j.abb.2022.109321_bib2 article-title: Mesenchymal stem cells alleviate palmitic acid-induced endothelial-to-mesenchymal transition by suppressing endoplasmic reticulum stress publication-title: Am. J. Physiol. Endocrinol. Metab. doi: 10.1152/ajpendo.00155.2020 – volume: 9 start-page: 1985 year: 2018 ident: 10.1016/j.abb.2022.109321_bib10 article-title: A potential link between oxidative stress and endothelial-to-mesenchymal transition in systemic sclerosis publication-title: Front. Immunol. doi: 10.3389/fimmu.2018.01985 – volume: 125 start-page: 4514 year: 2015 ident: 10.1016/j.abb.2022.109321_bib25 article-title: Endothelial-to-mesenchymal transition drives atherosclerosis progression publication-title: J. Clin. Invest. doi: 10.1172/JCI82719 – volume: 247 start-page: 492 year: 2018 ident: 10.1016/j.abb.2022.109321_bib11 article-title: Endothelial-to-mesenchymal transition in cardiovascular diseases: developmental signaling pathways gone awry publication-title: Dev. Dynam. doi: 10.1002/dvdy.24589 – volume: 8 start-page: 902 year: 2017 ident: 10.1016/j.abb.2022.109321_bib6 article-title: Palmitic acid: physiological role, metabolism and nutritional implications publication-title: Front. Physiol. doi: 10.3389/fphys.2017.00902 – volume: 11 start-page: 2140 year: 2019 ident: 10.1016/j.abb.2022.109321_bib18 article-title: Vaccarin prevents ox-LDL-induced HUVEC EndMT, inflammation and apoptosis by suppressing ROS/p38 MAPK signaling publication-title: Am. J. Transl. Res. – volume: 23 start-page: 1481 issue: 12 year: 2017 ident: 10.1016/j.abb.2022.109321_bib31 article-title: IRF3 and type I interferons fuel a fatal response to myocardial infarction publication-title: Nat. Med. doi: 10.1038/nm.4428 – volume: 17 start-page: 1142 year: 2016 ident: 10.1016/j.abb.2022.109321_bib15 article-title: Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing publication-title: Nat. Immunol. doi: 10.1038/ni.3558 – volume: 15 start-page: 445 year: 2018 ident: 10.1016/j.abb.2022.109321_bib23 article-title: Reassessing endothelial-to-mesenchymal transition in cardiovascular diseases publication-title: Nat. Rev. Cardiol. doi: 10.1038/s41569-018-0023-y – volume: 13 start-page: 5650 year: 2021 ident: 10.1016/j.abb.2022.109321_bib30 article-title: Synergistic inflammatory signaling by cGAS may be involved in the development of atherosclerosis publication-title: Aging (Albany NY) doi: 10.18632/aging.202491 – volume: 183 start-page: 636 year: 2020 ident: 10.1016/j.abb.2022.109321_bib17 article-title: TDP-43 triggers mitochondrial DNA release via mPTP to activate cGAS/STING in ALS publication-title: Cell doi: 10.1016/j.cell.2020.09.020 – volume: 73 start-page: 190 year: 2019 ident: 10.1016/j.abb.2022.109321_bib22 article-title: Endothelial to mesenchymal transition in cardiovascular disease: JACC state-of-the-art review publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2018.09.089 – volume: 7 start-page: 53 year: 2020 ident: 10.1016/j.abb.2022.109321_bib21 article-title: Endothelial-to-Mesenchymal transition, vascular inflammation, and atherosclerosis publication-title: Front. Cardiovasc. Med. doi: 10.3389/fcvm.2020.00053 |
| SSID | ssj0011462 |
| Score | 2.4948487 |
| Snippet | Elevated levels of plasma free fatty acids (FFAs) lead to endothelial dysfunction, a process that is involved in the pathogenesis of atherosclerosis.... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 109321 |
| SubjectTerms | Atherosclerosis biophysics cell viability cGAS-STING pathway DNA, Mitochondrial - metabolism Endothelial Cells - metabolism Endothelial-to-mesenchymal transformation genes Human aortic endothelial cells Humans inflammation interferons Interferons - pharmacology Membrane Proteins - metabolism migratory behavior nitric oxide Nucleotidyltransferases - metabolism oxidative stress Palmitic acid Palmitic Acid - pharmacology pathogenesis RNA interference Signal Transduction stress response |
| Title | Palmitic acid promotes endothelial-to-mesenchymal transition via activation of the cytosolic DNA-sensing cGAS-STING pathway |
| URI | https://dx.doi.org/10.1016/j.abb.2022.109321 https://www.ncbi.nlm.nih.gov/pubmed/35697075 https://www.proquest.com/docview/2676552416 https://www.proquest.com/docview/2718241049 |
| Volume | 727 |
| WOSCitedRecordID | wos000861387300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1096-0384 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011462 issn: 0003-9861 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6DQQvCDYG5TIZCe2BylPjOBc_dqXjoqqA1kkVL5HtJGqmNinrhVaI_85xEqcF0Wo88BJFkU9q5ft6fOxzQ-i1raRDlW8RKxaSgPYDPcilS4RiEbd5rJgt8mYTXq_nDwb8c6320-TCLEZemvrLJZ_8V6jhGYCtU2f_Ae7qpfAA7gF0uALscL0V8LojSpKXYVWJrgGgw-2iaSNKQ51sNYIJkFlGxjrrSA1X4zzYHNarPHSrsdA5Wsq0PDMBBGo1y6a6gHDjba9FpjrmXafqvmtdksu-Pu7SfY2_i988xJslbWWi-3IVjeVybwU8KI5UKou-m8w12l822NoeRoUi-jrcYF95vn2eVJLzrAgvWpZFxMszDNj-lgEXG3rZJtwvyrIbvQyWVWOSl7uiFvmrti8OHq7PhJRn-rXl4PXSZtz5vU_BxVW3G_Q7g_7p5BvRTce0c77swLKHDqjncFCKB60PncHHyg0Fywg1LRf19IxbPA8Q_ONXtxk22zYuuQHTf4gelDsP3CoY8wjVovQQHbVSMcvGK3yK81jg3MlyiO6em7t7bQPcEfphqIU1tbChFt5OLbymFgZq4TW1cBZjkMEVtfAGtfCaWrik1mN0ddHpt9-TsnkHUcyhM8JcS0omPWV7LHZ4HAsaScpcmznNUMhYWKGkqhm7YShgrBsxxalHYzcKfcEtaR-j_TRLo6cI25K5oXRB3AmZH_pSWBGLaQy2qc9hRaqjpvnygSor2-sGK6PAhDBeBwBWoMEKCrDq6E0lMinKuuwazAycQWmXFvZmAETcJfbKQB8AUNoRJ9Iom08D6nqu44Dt7O4YA0YjjIANfB09KXhTzdR2XO6Brf_sFtLP0f31P-4F2p_dzKOX6I5azJLpzQna8wb-SUn7X2Ae0FM |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Palmitic+acid+promotes+endothelial-to-mesenchymal+transition+via+activation+of+the+cytosolic+DNA-sensing+cGAS-STING+pathway&rft.jtitle=Archives+of+biochemistry+and+biophysics&rft.au=Liu%2C+Qian&rft.au=Cheng%2C+Zhe&rft.au=Huang%2C+Bi&rft.au=Luo%2C+Suxin&rft.date=2022-09-30&rft.issn=0003-9861&rft.volume=727+p.109321-&rft_id=info:doi/10.1016%2Fj.abb.2022.109321&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-9861&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-9861&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-9861&client=summon |