Enhancing the performance of biogeography-based optimization using polyphyletic migration operator and orthogonal learning

Biogeography-based optimization (BBO) is a powerful population-based algorithm inspired by biogeography and has been extensively applied to many science and engineering problems. However, its direct-copying-based migration and random mutation operators make BBO possess local exploitation ability but...

Full description

Saved in:
Bibliographic Details
Published in:Computers & operations research Vol. 41; pp. 125 - 139
Main Authors: Xiong, Guojiang, Shi, Dongyuan, Duan, Xianzhong
Format: Journal Article
Language:English
Published: Kidlington Elsevier Ltd 01.01.2014
Elsevier
Pergamon Press Inc
Subjects:
ISSN:0305-0548, 1873-765X, 0305-0548
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Biogeography-based optimization (BBO) is a powerful population-based algorithm inspired by biogeography and has been extensively applied to many science and engineering problems. However, its direct-copying-based migration and random mutation operators make BBO possess local exploitation ability but lack global exploration ability. To remedy the defect and enhance the performance of BBO, an enhanced BBO variant, called POLBBO, is developed in this paper. In POLBBO, a proposed efficient operator named polyphyletic migration operator can formally utilize as many as four individuals’ features to construct a new solution vector. This operator cannot only generate new features from more promising areas in the search space, but also effectively increase the population diversity. On the other hand, an orthogonal learning (OL) strategy based on orthogonal experimental design is employed. The OL strategy can quickly discover more useful information from the search experiences and efficiently utilize the information to construct a more promising solution, and thereby provide a systematic and elaborate reasoning method to guide the search directions of POLBBO. The proposed POLBBO is verified on a set of 24 benchmark functions with diverse complexities, and is compared with the basic BBO, five state-of-the-art BBO variants, five existing OL-based algorithms, and nine other evolutionary algorithms. The experimental results and comparisons demonstrate that the polyphyletic migration operator and the OL strategy can work together well and enhance the performance of BBO significantly in terms of the quality of the final solutions and the convergence rate. •An enhanced BBO variant (POLBBO) is developed for solving global numerical optimization problems.•A polyphyletic migration operator is proposed to generate new features from more promising areas in the search space.•An OL strategy is employed to provide a systematic reasoning method to guide the search directions of POLBBO.•The polyphyletic migration operator and the OL strategy can work together well and enhance the performance of BBO significantly.•Five state-of-the-art BBO variants, five existing OL-based algorithms, and nine other evolutionary algorithms are employed to compare.
AbstractList Biogeography-based optimization (BBO) is a powerful population-based algorithm inspired by biogeography and has been extensively applied to many science and engineering problems. However, its direct-copying-based migration and random mutation operators make BBO possess local exploitation ability but lack global exploration ability. To remedy the defect and enhance the performance of BBO, an enhanced BBO variant, called POLBBO, is developed in this paper. In POLBBO, a proposed efficient operator named polyphyletic migration operator can formally utilize as many as four individuals' features to construct a new solution vector. This operator cannot only generate new features from more promising areas in the search space, but also effectively increase the population diversity. On the other hand, an orthogonal learning (OL) strategy based on orthogonal experimental design is employed. The OL strategy can quickly discover more useful information from the search experiences and efficiently utilize the information to construct a more promising solution, and thereby provide a systematic and elaborate reasoning method to guide the search directions of POLBBO. The proposed POLBBO is verified on a set of 24 benchmark functions with diverse complexities, and is compared with the basic BBO, five state-of-the-art BBO variants, five existing OL-based algorithms, and nine other evolutionary algorithms. The experimental results and comparisons demonstrate that the polyphyletic migration operator and the OL strategy can work together well and enhance the performance of BBO significantly in terms of the quality of the final solutions and the convergence rate.
Biogeography-based optimization (BBO) is a powerful population-based algorithm inspired by biogeography and has been extensively applied to many science and engineering problems. However, its direct-copying-based migration and random mutation operators make BBO possess local exploitation ability but lack global exploration ability. To remedy the defect and enhance the performance of BBO, an enhanced BBO variant, called POLBBO, is developed in this paper. In POLBBO, a proposed efficient operator named polyphyletic migration operator can formally utilize as many as four individuals' features to construct a new solution vector. This operator cannot only generate new features from more promising areas in the search space, but also effectively increase the population diversity. On the other hand, an orthogonal learning (OL) strategy based on orthogonal experimental design is employed. The OL strategy can quickly discover more useful information from the search experiences and efficiently utilize the information to construct a more promising solution, and thereby provide a systematic and elaborate reasoning method to guide the search directions of POLBBO. The proposed POLBBO is verified on a set of 24 benchmark functions with diverse complexities, and is compared with the basic BBO, five state-of-the-art BBO variants, five existing OL-based algorithms, and nine other evolutionary algorithms. The experimental results and comparisons demonstrate that the polyphyletic migration operator and the OL strategy can work together well and enhance the performance of BBO significantly in terms of the quality of the final solutions and the convergence rate. [PUBLICATION ABSTRACT]
Biogeography-based optimization (BBO) is a powerful population-based algorithm inspired by biogeography and has been extensively applied to many science and engineering problems. However, its direct-copying-based migration and random mutation operators make BBO possess local exploitation ability but lack global exploration ability. To remedy the defect and enhance the performance of BBO, an enhanced BBO variant, called POLBBO, is developed in this paper. In POLBBO, a proposed efficient operator named polyphyletic migration operator can formally utilize as many as four individuals’ features to construct a new solution vector. This operator cannot only generate new features from more promising areas in the search space, but also effectively increase the population diversity. On the other hand, an orthogonal learning (OL) strategy based on orthogonal experimental design is employed. The OL strategy can quickly discover more useful information from the search experiences and efficiently utilize the information to construct a more promising solution, and thereby provide a systematic and elaborate reasoning method to guide the search directions of POLBBO. The proposed POLBBO is verified on a set of 24 benchmark functions with diverse complexities, and is compared with the basic BBO, five state-of-the-art BBO variants, five existing OL-based algorithms, and nine other evolutionary algorithms. The experimental results and comparisons demonstrate that the polyphyletic migration operator and the OL strategy can work together well and enhance the performance of BBO significantly in terms of the quality of the final solutions and the convergence rate. •An enhanced BBO variant (POLBBO) is developed for solving global numerical optimization problems.•A polyphyletic migration operator is proposed to generate new features from more promising areas in the search space.•An OL strategy is employed to provide a systematic reasoning method to guide the search directions of POLBBO.•The polyphyletic migration operator and the OL strategy can work together well and enhance the performance of BBO significantly.•Five state-of-the-art BBO variants, five existing OL-based algorithms, and nine other evolutionary algorithms are employed to compare.
Author Shi, Dongyuan
Xiong, Guojiang
Duan, Xianzhong
Author_xml – sequence: 1
  givenname: Guojiang
  surname: Xiong
  fullname: Xiong, Guojiang
– sequence: 2
  givenname: Dongyuan
  surname: Shi
  fullname: Shi, Dongyuan
  email: dongyuanshi@hust.edu.cn
– sequence: 3
  givenname: Xianzhong
  surname: Duan
  fullname: Duan, Xianzhong
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27868560$$DView record in Pascal Francis
BookMark eNqFkc1q3DAUhUVJoZO0D9CdoRS6sasfy7LpqoT0BwLZJJCdkOWrGQ2y5EqawuTpI2fSTRapNhLS9x3QPefozAcPCH0kuCGYdF_3jQ6xoZiwBosGU_IGbUgvWC06fn-GNphhXmPe9u_QeUp7XJagZIMervxOeW39tso7qBaIJsS53EAVTDXasIWwjWrZHetRJZiqsGQ72weVbfDVIa3iEtyxAA6y1dVsC_70GEqYyiFWyhct5l3YBq9c5UBFX7z36K1RLsGH5_0C3f24ur38VV_f_Px9-f261i2nuSbT2HLeA-uEorznZsCTMcp0GoZhAmxAlKMYB9KCEaallE6DYYqOjGBQE7tAX065Swx_DpCynG3S4JzyEA5JEs7wIIaOk_-jreCcsZ6Jgn56ge7DIZb_rVRLe0IIxoX6_EyppJUzcZ11kku0s4pHSUXf9bxbOXHidAwpRTBS2_w0xhyVdZJgudYs97LULNeaJRay1FxM8sL8F_6a8-3kQBn7XwtRJm2hdD7ZCDrLKdhX7EdcQsTZ
CODEN CMORAP
CitedBy_id crossref_primary_10_1016_j_cor_2015_03_013
crossref_primary_10_1016_j_eswa_2019_113113
crossref_primary_10_1016_j_ins_2023_119609
crossref_primary_10_1007_s44444_025_00009_7
crossref_primary_10_1155_2017_2314927
crossref_primary_10_1007_s00500_018_3113_1
crossref_primary_10_1007_s10489_016_0848_1
crossref_primary_10_1016_j_cor_2015_02_008
crossref_primary_10_1016_j_energy_2018_11_034
crossref_primary_10_1016_j_apm_2020_05_019
crossref_primary_10_1080_15325008_2022_2139435
crossref_primary_10_1016_j_asoc_2021_107690
crossref_primary_10_1016_j_apm_2016_09_020
crossref_primary_10_1016_j_asoc_2018_02_019
crossref_primary_10_1016_j_eswa_2022_116625
crossref_primary_10_1007_s00521_023_08743_2
crossref_primary_10_1109_TNSRE_2022_3186942
crossref_primary_10_1007_s11227_021_04105_8
crossref_primary_10_1016_j_engappai_2018_02_007
crossref_primary_10_1016_j_swevo_2015_10_006
crossref_primary_10_1155_2014_159675
crossref_primary_10_3390_en15207603
crossref_primary_10_1007_s10898_018_0608_3
crossref_primary_10_1016_j_engappai_2022_104753
crossref_primary_10_1049_iet_gtd_2016_1794
crossref_primary_10_1016_j_enconman_2013_12_052
crossref_primary_10_1007_s11042_023_14510_1
crossref_primary_10_1007_s00500_020_04863_2
crossref_primary_10_1155_2015_423642
crossref_primary_10_1016_j_asoc_2018_06_034
crossref_primary_10_1016_j_asoc_2016_04_022
crossref_primary_10_1016_j_ins_2015_07_059
crossref_primary_10_1109_TETCI_2017_2739124
crossref_primary_10_1109_TII_2023_3295422
crossref_primary_10_1007_s00500_015_1977_x
crossref_primary_10_1155_2019_9517568
crossref_primary_10_1016_j_ins_2019_07_054
crossref_primary_10_1016_j_eswa_2022_118711
crossref_primary_10_1007_s00500_018_3351_2
crossref_primary_10_1016_j_amc_2015_08_026
crossref_primary_10_1016_j_ress_2021_108269
crossref_primary_10_1017_S1759078718000247
crossref_primary_10_1109_TSMC_2020_2963943
crossref_primary_10_1155_2020_7824785
Cites_doi 10.1016/j.cor.2012.10.014
10.1109/4235.752920
10.1016/j.cor.2012.04.012
10.1162/evco.1993.1.1.1
10.1016/j.ins.2011.04.024
10.1016/j.cor.2011.06.007
10.1016/j.apenergy.2013.04.095
10.1109/TEVC.2005.857610
10.1109/TSMCB.2011.2171946
10.1109/TEVC.2008.927706
10.1109/TSMCB.2012.2222373
10.1007/s10898-007-9149-x
10.1016/j.cor.2008.08.015
10.1016/j.cor.2010.11.004
10.1109/TEVC.2007.894200
10.1109/TPWRS.2009.2034525
10.1007/s10898-004-9972-2
10.1109/TEVC.2007.895272
10.1016/j.cor.2007.12.001
10.1109/TSMCB.2010.2056367
10.1007/s00500-010-0591-1
10.1016/j.eswa.2011.05.011
10.1109/TEVC.2008.919004
10.1016/j.cor.2011.03.003
10.1109/ICSMC.2009.5346043
10.1016/j.engappai.2010.08.005
10.1016/j.ejor.2006.06.043
10.1109/4235.910464
10.1109/4235.771163
10.1016/j.camwa.2012.04.015
10.1016/j.cor.2012.11.008
10.1023/A:1008202821328
10.1016/j.ins.2010.05.035
10.1109/TSMCA.2007.914796
10.1109/CCDC.2012.6244262
10.1016/j.amc.2008.08.053
10.1016/j.cor.2010.06.007
10.1016/j.amc.2010.03.123
10.1016/j.eswa.2009.11.033
10.1016/j.ins.2010.12.006
10.1109/ICNN.1995.488968
10.1016/j.amc.2011.05.110
10.1016/j.asoc.2011.12.020
10.1162/106365601750190398
10.1109/TEVC.2010.2052054
10.1016/j.asoc.2010.04.008
10.1109/TSMCB.2012.2213808
10.1016/j.ins.2011.09.001
10.1016/j.cor.2012.12.006
10.1016/j.eswa.2010.05.064
10.1109/TAP.2010.2055778
ContentType Journal Article
Copyright 2013 Elsevier Ltd
2014 INIST-CNRS
Copyright Pergamon Press Inc. Jan 2014
Copyright_xml – notice: 2013 Elsevier Ltd
– notice: 2014 INIST-CNRS
– notice: Copyright Pergamon Press Inc. Jan 2014
DBID AAYXX
CITATION
IQODW
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.cor.2013.07.021
DatabaseName CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
Computer and Information Systems Abstracts
Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Business
Mathematics
Applied Sciences
Statistics
EISSN 1873-765X
0305-0548
EndPage 139
ExternalDocumentID 3102396131
27868560
10_1016_j_cor_2013_07_021
S0305054813002001
Genre Feature
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
186
1B1
1OL
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
AAYOK
ABAOU
ABBOA
ABEFU
ABFNM
ABFRF
ABJNI
ABMAC
ABMMH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACNCT
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
AEBSH
AEFWE
AEHXG
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AI.
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
AOUOD
APLSM
ARUGR
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HAMUX
HVGLF
HZ~
H~9
IHE
J1W
KOM
LY1
M41
MHUIS
MO0
MS~
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
PRBVW
Q38
R2-
RIG
ROL
RPZ
RXW
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSO
SSV
SSW
SSZ
T5K
TAE
TN5
U5U
UAO
UPT
VH1
WUQ
XFK
XPP
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
BNPGV
IQODW
SSH
7SC
8FD
AFXIZ
AGCQF
AGRNS
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c452t-1db4558e367a2585f90dffaf6ce99de0fe76ce7b914ef7f4222d9f3a2b310ead3
ISICitedReferencesCount 52
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000326610500014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0305-0548
IngestDate Sun Sep 28 08:20:45 EDT 2025
Thu Oct 02 10:32:58 EDT 2025
Fri Jul 25 03:45:22 EDT 2025
Wed Apr 02 07:26:17 EDT 2025
Sat Nov 29 03:23:37 EST 2025
Tue Nov 18 22:34:36 EST 2025
Fri Feb 23 02:33:28 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Global numerical optimization
Orthogonal learning
Biogeography-based optimization
Orthogonal experimental design (OED)
Polyphyletic migration operator
Orthogonal design
Probabilistic approach
Useful information
Evolutionary algorithm
Migration
Biogeography
Global optimum
Information retrieval
Experimental result
Experimental design
Reasoning
Heuristic method
Convergence rate
Defect
Swarm intelligence
Learning algorithm
Numerical convergence
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c452t-1db4558e367a2585f90dffaf6ce99de0fe76ce7b914ef7f4222d9f3a2b310ead3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 1442811100
PQPubID 23500
PageCount 15
ParticipantIDs proquest_miscellaneous_1530979651
proquest_miscellaneous_1475533837
proquest_journals_1442811100
pascalfrancis_primary_27868560
crossref_citationtrail_10_1016_j_cor_2013_07_021
crossref_primary_10_1016_j_cor_2013_07_021
elsevier_sciencedirect_doi_10_1016_j_cor_2013_07_021
PublicationCentury 2000
PublicationDate January 2014
2014-1-00
2014
20140101
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – month: 01
  year: 2014
  text: January 2014
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
– name: New York
PublicationTitle Computers & operations research
PublicationYear 2014
Publisher Elsevier Ltd
Elsevier
Pergamon Press Inc
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
– name: Pergamon Press Inc
References Qin, Huang, Suganthan (bib52) 2009; 13
Ergezer M, Simon D, Du D. Oppositional biogeography-based optimization. In: Proceedings of the 2009 IEEE international conference on systems, man and cybernetics, Piscataway, NJ, USA; 2009. p. 1009–14.
Sayed MM, Saad MS, Emara HM, Abou El-Zahab EE. A novel method for PID tuning using a modified biogeography-based optimization algorithm. In: Twenty-fourth Chinese control and decision conference (CCDC), Taiyuan; 2012. p. 1642–47.
Gong, Cai, Ling (bib25) 2010; 15
Yao, Liu, Lin (bib43) 1999; 3
Noman, Iba (bib50) 2008; 12
Wang, Rahnamayan, Sun, Omran (bib55) 2013; 43
Goldberg (bib3) 1989
Gao, Liu (bib14) 2012; 39
Gong, Cai, Jiang (bib38) 2008; 206
Dorigo M, Di Caro G. Ant colony optimization: a new meta-heuristic. In: Proceedings of the 1999 congress on evolutionary computation, Washington, DC; 1999. p. 1472–77.
Zhang, Leung (bib36) 1999; 3
Gong, Cai, Ling, Li (bib30) 2010; 216
Kennedy J, Eberhart RC. Partical swarm optimization. In: Proceedings of the IEEE international conference on neural networks, Perth, WA; 1995. p. 1942–48.
Xiong, Shi, Duan (bib24) 2013; 111
Jamuna, Swarup (bib23) 2012; 12
Boussaïd, Chatterjee, Siarry, Ahmed-Nacer (bib32) 2011; 38
Leung, Wang (bib37) 2001; 5
Wang, Cai, Zhang (bib41) 2012; 185
Hansen, Ostermeier (bib48) 2001; 9
Li, Yin (bib27) 2012; 64
Pan, Suganthan, Wang, Gao, Mallipeddi (bib7) 2011; 38
Li, Wang, Zhou, Yin (bib26) 2011; 218
Ho, Lin, Liauh, Ho (bib39) 2008; 38
Roy, Ghoshal, Thakur (bib22) 2010; 37
Bäck, Schwefel (bib1) 1993; 1
Schlüter, Egea, Banga (bib12) 2009; 36
Elsayed, Sarker, Essam (bib5) 2011; 38
Zhan, Zhang, Li, Shi (bib35) 2011; 15
Boussaïd, Chatterjee, Siarry, Ahmed-Nacer (bib19) 2012; 39
Simon, Rarick, Ergezer, Du (bib18) 2011; 181
Rahnamayan, Tizhoosh, Salama (bib51) 2008; 12
Singh, Kumar, Kamal (bib20) 2010; 58
Storn, Price (bib6) 1997; 11
Simon (bib16) 2008; 12
Xiang, An (bib15) 2013; 40
Ali, Khompatraporn, Zabinsky (bib45) 2005; 31
Li, Yang, Nguyen (bib54) 2012; 42
Drezner, MisevičIus (bib4) 2013; 40
Liang, Qin, Suganthan, Baskar (bib47) 2006; 10
Gao, Liu, Huang (bib42) 2013; 43
García-Villoria, Pastor (bib9) 2009; 36
Gong, Cai, Ling, Li (bib46) 2011; 41
Eiben, Smith (bib2) 2008
Nezhad, Shandiz, Jahromi (bib10) 2013; 40
Chan, Kwong, Jiang, Aydin, Fogarty (bib40) 2010; 37
Karaboga, Basturk (bib13) 2007; 39
Ma (bib17) 2010; 180
Garcia-Martinez, Lozano, Herrera, Molina, Sánchez (bib49) 2008; 185
Kang, Li, Ma (bib44) 2011; 181
Cai, Gong, Ling, Zhang (bib53) 2011; 11
Bhattacharya, Chattopadhyay (bib21) 2010; 25
Yang, Liu, Zhang, Feng (bib33) 2012
Ma, Simon (bib28) 2011; 24
Wang, Xu (bib34) 2011; 38
Drezner (10.1016/j.cor.2013.07.021_bib4) 2013; 40
Pan (10.1016/j.cor.2013.07.021_bib7) 2011; 38
Goldberg (10.1016/j.cor.2013.07.021_bib3) 1989
Yang (10.1016/j.cor.2013.07.021_bib33) 2012
Xiong (10.1016/j.cor.2013.07.021_bib24) 2013; 111
Yao (10.1016/j.cor.2013.07.021_bib43) 1999; 3
Liang (10.1016/j.cor.2013.07.021_bib47) 2006; 10
Wang (10.1016/j.cor.2013.07.021_bib41) 2012; 185
Xiang (10.1016/j.cor.2013.07.021_bib15) 2013; 40
Wang (10.1016/j.cor.2013.07.021_bib34) 2011; 38
Jamuna (10.1016/j.cor.2013.07.021_bib23) 2012; 12
Noman (10.1016/j.cor.2013.07.021_bib50) 2008; 12
Li (10.1016/j.cor.2013.07.021_bib54) 2012; 42
Elsayed (10.1016/j.cor.2013.07.021_bib5) 2011; 38
Simon (10.1016/j.cor.2013.07.021_bib16) 2008; 12
Cai (10.1016/j.cor.2013.07.021_bib53) 2011; 11
Li (10.1016/j.cor.2013.07.021_bib27) 2012; 64
Zhang (10.1016/j.cor.2013.07.021_bib36) 1999; 3
Boussaïd (10.1016/j.cor.2013.07.021_bib19) 2012; 39
Gong (10.1016/j.cor.2013.07.021_bib38) 2008; 206
Garcia-Martinez (10.1016/j.cor.2013.07.021_bib49) 2008; 185
Bäck (10.1016/j.cor.2013.07.021_bib1) 1993; 1
10.1016/j.cor.2013.07.021_bib11
Bhattacharya (10.1016/j.cor.2013.07.021_bib21) 2010; 25
Simon (10.1016/j.cor.2013.07.021_bib18) 2011; 181
Gong (10.1016/j.cor.2013.07.021_bib25) 2010; 15
Rahnamayan (10.1016/j.cor.2013.07.021_bib51) 2008; 12
Nezhad (10.1016/j.cor.2013.07.021_bib10) 2013; 40
Li (10.1016/j.cor.2013.07.021_bib26) 2011; 218
Wang (10.1016/j.cor.2013.07.021_bib55) 2013; 43
Storn (10.1016/j.cor.2013.07.021_bib6) 1997; 11
Gao (10.1016/j.cor.2013.07.021_bib14) 2012; 39
10.1016/j.cor.2013.07.021_bib29
Gong (10.1016/j.cor.2013.07.021_bib46) 2011; 41
Chan (10.1016/j.cor.2013.07.021_bib40) 2010; 37
Singh (10.1016/j.cor.2013.07.021_bib20) 2010; 58
Schlüter (10.1016/j.cor.2013.07.021_bib12) 2009; 36
Gao (10.1016/j.cor.2013.07.021_bib42) 2013; 43
Boussaïd (10.1016/j.cor.2013.07.021_bib32) 2011; 38
Ali (10.1016/j.cor.2013.07.021_bib45) 2005; 31
Ma (10.1016/j.cor.2013.07.021_bib28) 2011; 24
Hansen (10.1016/j.cor.2013.07.021_bib48) 2001; 9
García-Villoria (10.1016/j.cor.2013.07.021_bib9) 2009; 36
Gong (10.1016/j.cor.2013.07.021_bib30) 2010; 216
Ho (10.1016/j.cor.2013.07.021_bib39) 2008; 38
10.1016/j.cor.2013.07.021_bib31
Zhan (10.1016/j.cor.2013.07.021_bib35) 2011; 15
Eiben (10.1016/j.cor.2013.07.021_bib2) 2008
Karaboga (10.1016/j.cor.2013.07.021_bib13) 2007; 39
10.1016/j.cor.2013.07.021_bib8
Leung (10.1016/j.cor.2013.07.021_bib37) 2001; 5
Ma (10.1016/j.cor.2013.07.021_bib17) 2010; 180
Roy (10.1016/j.cor.2013.07.021_bib22) 2010; 37
Qin (10.1016/j.cor.2013.07.021_bib52) 2009; 13
Kang (10.1016/j.cor.2013.07.021_bib44) 2011; 181
References_xml – volume: 40
  start-page: 1038
  year: 2013
  end-page: 1046
  ident: bib4
  article-title: Enhancing the performance of hybrid genetic algorithms by differential improvement
  publication-title: Computers & Operations Research
– volume: 31
  start-page: 635
  year: 2005
  end-page: 672
  ident: bib45
  article-title: A numerical evaluation of several stochastic algorithms on selected continuous global optimization test problems
  publication-title: Journal of Global Optimization
– volume: 15
  start-page: 832
  year: 2011
  end-page: 847
  ident: bib35
  article-title: Orthogonal learning particle swarm optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 185
  start-page: 1088
  year: 2008
  end-page: 1113
  ident: bib49
  article-title: Global and local real-coded genetic algorithms based on parent-centric crossover operators
  publication-title: European Journal of Operational Research
– volume: 11
  start-page: 341
  year: 1997
  end-page: 359
  ident: bib6
  article-title: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: Journal of Global Optimization
– volume: 10
  start-page: 281
  year: 2006
  end-page: 295
  ident: bib47
  article-title: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions
  publication-title: IEEE Transactions on Evolutionary Computation
– start-page: 1
  year: 2012
  end-page: 12
  ident: bib33
  article-title: Control and synchronization of chaotic systems by an improved biogeography-based optimization algorithm
  publication-title: Applied Intelligence
– volume: 5
  start-page: 41
  year: 2001
  end-page: 53
  ident: bib37
  article-title: An orthogonal genetic algorithm with quantization for global numerical optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 36
  start-page: 951
  year: 2009
  end-page: 966
  ident: bib9
  article-title: Introducing dynamic diversity into a discrete particle swarm optimization
  publication-title: Computers & Operations Research
– volume: 24
  start-page: 517
  year: 2011
  end-page: 525
  ident: bib28
  article-title: Blended biogeography-based optimization for constrained optimization
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 38
  start-page: 15103
  year: 2011
  end-page: 15109
  ident: bib34
  article-title: An effective hybrid biogeography-based optimization algorithm for parameter estimation of chaotic systems
  publication-title: Expert Systems with Applications
– volume: 11
  start-page: 1363
  year: 2011
  end-page: 1379
  ident: bib53
  article-title: A clustering-based differential evolution for global optimization
  publication-title: Applied Soft Computing
– volume: 15
  start-page: 645
  year: 2010
  end-page: 665
  ident: bib25
  article-title: DE/BBO: a hybrid differential evolution with biogeography-based optimization for global numerical optimization
  publication-title: Soft Computing
– reference: Kennedy J, Eberhart RC. Partical swarm optimization. In: Proceedings of the IEEE international conference on neural networks, Perth, WA; 1995. p. 1942–48.
– volume: 39
  start-page: 687
  year: 2012
  end-page: 697
  ident: bib14
  article-title: A modified artificial bee colony algorithm
  publication-title: Computers & Operations Research
– volume: 216
  start-page: 2749
  year: 2010
  end-page: 2758
  ident: bib30
  article-title: A real-coded biogeography-based optimization with mutation
  publication-title: Applied Mathematics and Computation
– volume: 185
  start-page: 153
  year: 2012
  end-page: 177
  ident: bib41
  article-title: Enhancing the search ability of differential evolution through orthogonal crossover
  publication-title: Information Sciences
– volume: 25
  start-page: 1064
  year: 2010
  end-page: 1077
  ident: bib21
  article-title: Biogeography-based optimization for different economic load dispatch problems
  publication-title: IEEE Transactions on Power Systems
– volume: 38
  start-page: 394
  year: 2011
  end-page: 408
  ident: bib7
  article-title: A differential evolution algorithm with self-adapting strategy and control parameters
  publication-title: Computers & Operations Research
– volume: 1
  start-page: 1
  year: 1993
  end-page: 23
  ident: bib1
  article-title: An overview of evolutionary algorithms for parameter optimization
  publication-title: Evolutionary Computation
– reference: Dorigo M, Di Caro G. Ant colony optimization: a new meta-heuristic. In: Proceedings of the 1999 congress on evolutionary computation, Washington, DC; 1999. p. 1472–77.
– volume: 43
  start-page: 1011
  year: 2013
  end-page: 1024
  ident: bib42
  article-title: A novel artificial bee colony algorithm based on modified search equation and orthogonal learning
  publication-title: IEEE Transactions on Cybernetics
– volume: 13
  start-page: 398
  year: 2009
  end-page: 417
  ident: bib52
  article-title: Differential evolution algorithm with strategy adaptation for global numerical optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 12
  start-page: 1503
  year: 2012
  end-page: 1510
  ident: bib23
  article-title: Multi-objective biogeography based optimization for optimal PMU placement
  publication-title: Applied Soft Computing
– volume: 38
  start-page: 288
  year: 2008
  end-page: 298
  ident: bib39
  article-title: OPSO: orthogonal particle swarm optimization and its application to task assignment problems
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics. Part A: Systems and Humans
– volume: 38
  start-page: 1188
  year: 2011
  end-page: 1198
  ident: bib32
  article-title: Two-stage update biogeography-based optimization using differential evolution algorithm (DBBO)
  publication-title: Computers & Operations Research
– volume: 218
  start-page: 598
  year: 2011
  end-page: 609
  ident: bib26
  article-title: A perturb biogeography based optimization with mutation for global numerical optimization
  publication-title: Applied Mathematics and Computation
– year: 2008
  ident: bib2
  article-title: Introduction to evolutionary computing
  publication-title: ,
– volume: 111
  start-page: 801
  year: 2013
  end-page: 811
  ident: bib24
  article-title: Multi-strategy ensemble biogeography-based optimization for economic dispatch problems
  publication-title: Applied Energy
– volume: 181
  start-page: 3508
  year: 2011
  end-page: 3531
  ident: bib44
  article-title: Rosenbrock artificial bee colony algorithm for accurate global optimization of numerical functions
  publication-title: Information Sciences
– volume: 38
  start-page: 1877
  year: 2011
  end-page: 1896
  ident: bib5
  article-title: Multi-operator based evolutionary algorithms for solving constrained optimization problems
  publication-title: Computers & Operations Research
– year: 1989
  ident: bib3
  article-title: Genetic algorithms in search, optimization, and machine learning
  publication-title: ,
– volume: 37
  start-page: 3853
  year: 2010
  end-page: 3862
  ident: bib40
  article-title: A new orthogonal array based crossover, with analysis of gene interactions, for evolutionary algorithms and its application to car door design
  publication-title: Expert Systems with Applications
– volume: 12
  start-page: 107
  year: 2008
  end-page: 125
  ident: bib50
  article-title: Accelerating differential evolution using an adaptive local search
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 12
  start-page: 702
  year: 2008
  end-page: 713
  ident: bib16
  article-title: Biogeography-based optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 3
  start-page: 53
  year: 1999
  end-page: 62
  ident: bib36
  article-title: An orthogonal genetic algorithm for multimedia multicast routing
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 39
  start-page: 459
  year: 2007
  end-page: 471
  ident: bib13
  article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm
  publication-title: Journal of Global Optimization
– volume: 37
  start-page: 8221
  year: 2010
  end-page: 8228
  ident: bib22
  article-title: Biogeography based optimization for multi-constraint optimal power flow with emission and non-smooth cost function
  publication-title: Expert Systems with Applications
– volume: 42
  start-page: 627
  year: 2012
  end-page: 646
  ident: bib54
  article-title: A self-learning particle swarm optimizer for global optimization problems
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics. Part B: Cybernetics
– volume: 180
  start-page: 3444
  year: 2010
  end-page: 3464
  ident: bib17
  article-title: An analysis of the equilibrium of migration models for biogeography-based optimization
  publication-title: Information Sciences
– volume: 3
  start-page: 82
  year: 1999
  end-page: 102
  ident: bib43
  article-title: Evolutionary programming made faster
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 41
  start-page: 397
  year: 2011
  end-page: 413
  ident: bib46
  article-title: Enhanced differential evolution with adaptive strategies for numerical optimization
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics. Part B: Cybernetics
– volume: 39
  start-page: 3293
  year: 2012
  end-page: 3304
  ident: bib19
  article-title: Biogeography-based optimization for constrained optimization problems
  publication-title: Computers & Operations Research
– volume: 181
  start-page: 1224
  year: 2011
  end-page: 1248
  ident: bib18
  article-title: Analytical and numerical comparisons of biogeography-based optimization and genetic algorithms
  publication-title: Information Sciences
– volume: 206
  start-page: 56
  year: 2008
  end-page: 69
  ident: bib38
  article-title: Enhancing the performance of differential evolution using orthogonal design method
  publication-title: Applied Mathematics and Computation
– volume: 12
  start-page: 64
  year: 2008
  end-page: 79
  ident: bib51
  article-title: Opposition-based differential evolution
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 9
  start-page: 159
  year: 2001
  end-page: 195
  ident: bib48
  article-title: Completely derandomized self-adaptation in evolution strategies
  publication-title: Evolutionary Computation
– reference: Ergezer M, Simon D, Du D. Oppositional biogeography-based optimization. In: Proceedings of the 2009 IEEE international conference on systems, man and cybernetics, Piscataway, NJ, USA; 2009. p. 1009–14.
– volume: 40
  start-page: 963
  year: 2013
  end-page: 972
  ident: bib10
  article-title: A particle swarm-BFGS algorithm for nonlinear programming problems
  publication-title: Computers & Operations Research
– volume: 36
  start-page: 2217
  year: 2009
  end-page: 2229
  ident: bib12
  article-title: Extended ant colony optimization for non-convex mixed integer nonlinear programming
  publication-title: Computers & Operations Research
– volume: 40
  start-page: 1256
  year: 2013
  end-page: 1265
  ident: bib15
  article-title: An efficient and robust artificial bee colony algorithm for numerical optimization
  publication-title: Computers & Operations Research
– volume: 58
  start-page: 3375
  year: 2010
  end-page: 3379
  ident: bib20
  article-title: Design of Yagi–Uda antenna using biogeography based optimization
  publication-title: IEEE Transactions on Antennas and Propagation
– volume: 43
  start-page: 634
  year: 2013
  end-page: 647
  ident: bib55
  article-title: Gaussian bare-bones differential evolution
  publication-title: IEEE Transactions on Cybernetics
– volume: 64
  start-page: 2833
  year: 2012
  end-page: 2844
  ident: bib27
  article-title: Multi-operator based biogeography based optimization with mutation for global numerical optimization
  publication-title: Computers & Mathematics with Applications
– reference: Sayed MM, Saad MS, Emara HM, Abou El-Zahab EE. A novel method for PID tuning using a modified biogeography-based optimization algorithm. In: Twenty-fourth Chinese control and decision conference (CCDC), Taiyuan; 2012. p. 1642–47.
– volume: 40
  start-page: 1038
  issue: 4
  year: 2013
  ident: 10.1016/j.cor.2013.07.021_bib4
  article-title: Enhancing the performance of hybrid genetic algorithms by differential improvement
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2012.10.014
– volume: 3
  start-page: 53
  issue: 1
  year: 1999
  ident: 10.1016/j.cor.2013.07.021_bib36
  article-title: An orthogonal genetic algorithm for multimedia multicast routing
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.752920
– volume: 39
  start-page: 3293
  issue: 12
  year: 2012
  ident: 10.1016/j.cor.2013.07.021_bib19
  article-title: Biogeography-based optimization for constrained optimization problems
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2012.04.012
– volume: 1
  start-page: 1
  issue: 1
  year: 1993
  ident: 10.1016/j.cor.2013.07.021_bib1
  article-title: An overview of evolutionary algorithms for parameter optimization
  publication-title: Evolutionary Computation
  doi: 10.1162/evco.1993.1.1.1
– volume: 181
  start-page: 3508
  issue: 16
  year: 2011
  ident: 10.1016/j.cor.2013.07.021_bib44
  article-title: Rosenbrock artificial bee colony algorithm for accurate global optimization of numerical functions
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2011.04.024
– volume: 39
  start-page: 687
  issue: 3
  year: 2012
  ident: 10.1016/j.cor.2013.07.021_bib14
  article-title: A modified artificial bee colony algorithm
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2011.06.007
– volume: 111
  start-page: 801
  year: 2013
  ident: 10.1016/j.cor.2013.07.021_bib24
  article-title: Multi-strategy ensemble biogeography-based optimization for economic dispatch problems
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2013.04.095
– volume: 10
  start-page: 281
  issue: 3
  year: 2006
  ident: 10.1016/j.cor.2013.07.021_bib47
  article-title: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2005.857610
– volume: 42
  start-page: 627
  issue: 3
  year: 2012
  ident: 10.1016/j.cor.2013.07.021_bib54
  article-title: A self-learning particle swarm optimizer for global optimization problems
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics. Part B: Cybernetics
  doi: 10.1109/TSMCB.2011.2171946
– volume: 13
  start-page: 398
  issue: 2
  year: 2009
  ident: 10.1016/j.cor.2013.07.021_bib52
  article-title: Differential evolution algorithm with strategy adaptation for global numerical optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2008.927706
– volume: 43
  start-page: 1011
  issue: 3
  year: 2013
  ident: 10.1016/j.cor.2013.07.021_bib42
  article-title: A novel artificial bee colony algorithm based on modified search equation and orthogonal learning
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TSMCB.2012.2222373
– volume: 39
  start-page: 459
  issue: 3
  year: 2007
  ident: 10.1016/j.cor.2013.07.021_bib13
  article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm
  publication-title: Journal of Global Optimization
  doi: 10.1007/s10898-007-9149-x
– volume: 36
  start-page: 2217
  issue: 7
  year: 2009
  ident: 10.1016/j.cor.2013.07.021_bib12
  article-title: Extended ant colony optimization for non-convex mixed integer nonlinear programming
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2008.08.015
– volume: 38
  start-page: 1188
  issue: 8
  year: 2011
  ident: 10.1016/j.cor.2013.07.021_bib32
  article-title: Two-stage update biogeography-based optimization using differential evolution algorithm (DBBO)
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2010.11.004
– volume: 12
  start-page: 64
  issue: 1
  year: 2008
  ident: 10.1016/j.cor.2013.07.021_bib51
  article-title: Opposition-based differential evolution
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2007.894200
– volume: 25
  start-page: 1064
  issue: 2
  year: 2010
  ident: 10.1016/j.cor.2013.07.021_bib21
  article-title: Biogeography-based optimization for different economic load dispatch problems
  publication-title: IEEE Transactions on Power Systems
  doi: 10.1109/TPWRS.2009.2034525
– volume: 31
  start-page: 635
  issue: 4
  year: 2005
  ident: 10.1016/j.cor.2013.07.021_bib45
  article-title: A numerical evaluation of several stochastic algorithms on selected continuous global optimization test problems
  publication-title: Journal of Global Optimization
  doi: 10.1007/s10898-004-9972-2
– volume: 12
  start-page: 107
  issue: 1
  year: 2008
  ident: 10.1016/j.cor.2013.07.021_bib50
  article-title: Accelerating differential evolution using an adaptive local search
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2007.895272
– volume: 36
  start-page: 951
  issue: 3
  year: 2009
  ident: 10.1016/j.cor.2013.07.021_bib9
  article-title: Introducing dynamic diversity into a discrete particle swarm optimization
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2007.12.001
– volume: 41
  start-page: 397
  issue: 2
  year: 2011
  ident: 10.1016/j.cor.2013.07.021_bib46
  article-title: Enhanced differential evolution with adaptive strategies for numerical optimization
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics. Part B: Cybernetics
  doi: 10.1109/TSMCB.2010.2056367
– volume: 15
  start-page: 645
  issue: 4
  year: 2010
  ident: 10.1016/j.cor.2013.07.021_bib25
  article-title: DE/BBO: a hybrid differential evolution with biogeography-based optimization for global numerical optimization
  publication-title: Soft Computing
  doi: 10.1007/s00500-010-0591-1
– volume: 38
  start-page: 15103
  issue: 12
  year: 2011
  ident: 10.1016/j.cor.2013.07.021_bib34
  article-title: An effective hybrid biogeography-based optimization algorithm for parameter estimation of chaotic systems
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2011.05.011
– volume: 12
  start-page: 702
  issue: 6
  year: 2008
  ident: 10.1016/j.cor.2013.07.021_bib16
  article-title: Biogeography-based optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2008.919004
– volume: 38
  start-page: 1877
  issue: 12
  year: 2011
  ident: 10.1016/j.cor.2013.07.021_bib5
  article-title: Multi-operator based evolutionary algorithms for solving constrained optimization problems
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2011.03.003
– ident: 10.1016/j.cor.2013.07.021_bib31
  doi: 10.1109/ICSMC.2009.5346043
– volume: 24
  start-page: 517
  issue: 3
  year: 2011
  ident: 10.1016/j.cor.2013.07.021_bib28
  article-title: Blended biogeography-based optimization for constrained optimization
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2010.08.005
– volume: 185
  start-page: 1088
  issue: 3
  year: 2008
  ident: 10.1016/j.cor.2013.07.021_bib49
  article-title: Global and local real-coded genetic algorithms based on parent-centric crossover operators
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2006.06.043
– volume: 5
  start-page: 41
  issue: 1
  year: 2001
  ident: 10.1016/j.cor.2013.07.021_bib37
  article-title: An orthogonal genetic algorithm with quantization for global numerical optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.910464
– volume: 3
  start-page: 82
  issue: 2
  year: 1999
  ident: 10.1016/j.cor.2013.07.021_bib43
  article-title: Evolutionary programming made faster
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.771163
– volume: 64
  start-page: 2833
  issue: 9
  year: 2012
  ident: 10.1016/j.cor.2013.07.021_bib27
  article-title: Multi-operator based biogeography based optimization with mutation for global numerical optimization
  publication-title: Computers & Mathematics with Applications
  doi: 10.1016/j.camwa.2012.04.015
– volume: 40
  start-page: 963
  issue: 4
  year: 2013
  ident: 10.1016/j.cor.2013.07.021_bib10
  article-title: A particle swarm-BFGS algorithm for nonlinear programming problems
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2012.11.008
– volume: 11
  start-page: 341
  issue: 4
  year: 1997
  ident: 10.1016/j.cor.2013.07.021_bib6
  article-title: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: Journal of Global Optimization
  doi: 10.1023/A:1008202821328
– ident: 10.1016/j.cor.2013.07.021_bib11
– volume: 180
  start-page: 3444
  issue: 18
  year: 2010
  ident: 10.1016/j.cor.2013.07.021_bib17
  article-title: An analysis of the equilibrium of migration models for biogeography-based optimization
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2010.05.035
– volume: 38
  start-page: 288
  issue: 2
  year: 2008
  ident: 10.1016/j.cor.2013.07.021_bib39
  article-title: OPSO: orthogonal particle swarm optimization and its application to task assignment problems
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics. Part A: Systems and Humans
  doi: 10.1109/TSMCA.2007.914796
– ident: 10.1016/j.cor.2013.07.021_bib29
  doi: 10.1109/CCDC.2012.6244262
– volume: 206
  start-page: 56
  issue: 1
  year: 2008
  ident: 10.1016/j.cor.2013.07.021_bib38
  article-title: Enhancing the performance of differential evolution using orthogonal design method
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2008.08.053
– year: 2008
  ident: 10.1016/j.cor.2013.07.021_bib2
  article-title: Introduction to evolutionary computing
– volume: 38
  start-page: 394
  issue: 1
  year: 2011
  ident: 10.1016/j.cor.2013.07.021_bib7
  article-title: A differential evolution algorithm with self-adapting strategy and control parameters
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2010.06.007
– volume: 216
  start-page: 2749
  issue: 9
  year: 2010
  ident: 10.1016/j.cor.2013.07.021_bib30
  article-title: A real-coded biogeography-based optimization with mutation
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2010.03.123
– volume: 37
  start-page: 3853
  issue: 5
  year: 2010
  ident: 10.1016/j.cor.2013.07.021_bib40
  article-title: A new orthogonal array based crossover, with analysis of gene interactions, for evolutionary algorithms and its application to car door design
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2009.11.033
– volume: 181
  start-page: 1224
  issue: 7
  year: 2011
  ident: 10.1016/j.cor.2013.07.021_bib18
  article-title: Analytical and numerical comparisons of biogeography-based optimization and genetic algorithms
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2010.12.006
– start-page: 1
  year: 2012
  ident: 10.1016/j.cor.2013.07.021_bib33
  article-title: Control and synchronization of chaotic systems by an improved biogeography-based optimization algorithm
  publication-title: Applied Intelligence
– ident: 10.1016/j.cor.2013.07.021_bib8
  doi: 10.1109/ICNN.1995.488968
– volume: 218
  start-page: 598
  issue: 2
  year: 2011
  ident: 10.1016/j.cor.2013.07.021_bib26
  article-title: A perturb biogeography based optimization with mutation for global numerical optimization
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2011.05.110
– volume: 12
  start-page: 1503
  issue: 5
  year: 2012
  ident: 10.1016/j.cor.2013.07.021_bib23
  article-title: Multi-objective biogeography based optimization for optimal PMU placement
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2011.12.020
– volume: 9
  start-page: 159
  issue: 2
  year: 2001
  ident: 10.1016/j.cor.2013.07.021_bib48
  article-title: Completely derandomized self-adaptation in evolution strategies
  publication-title: Evolutionary Computation
  doi: 10.1162/106365601750190398
– volume: 15
  start-page: 832
  issue: 6
  year: 2011
  ident: 10.1016/j.cor.2013.07.021_bib35
  article-title: Orthogonal learning particle swarm optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2010.2052054
– volume: 11
  start-page: 1363
  issue: 1
  year: 2011
  ident: 10.1016/j.cor.2013.07.021_bib53
  article-title: A clustering-based differential evolution for global optimization
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2010.04.008
– volume: 43
  start-page: 634
  issue: 2
  year: 2013
  ident: 10.1016/j.cor.2013.07.021_bib55
  article-title: Gaussian bare-bones differential evolution
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TSMCB.2012.2213808
– volume: 185
  start-page: 153
  issue: 1
  year: 2012
  ident: 10.1016/j.cor.2013.07.021_bib41
  article-title: Enhancing the search ability of differential evolution through orthogonal crossover
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2011.09.001
– volume: 40
  start-page: 1256
  issue: 5
  year: 2013
  ident: 10.1016/j.cor.2013.07.021_bib15
  article-title: An efficient and robust artificial bee colony algorithm for numerical optimization
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2012.12.006
– year: 1989
  ident: 10.1016/j.cor.2013.07.021_bib3
  article-title: Genetic algorithms in search, optimization, and machine learning
– volume: 37
  start-page: 8221
  issue: 12
  year: 2010
  ident: 10.1016/j.cor.2013.07.021_bib22
  article-title: Biogeography based optimization for multi-constraint optimal power flow with emission and non-smooth cost function
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2010.05.064
– volume: 58
  start-page: 3375
  issue: 10
  year: 2010
  ident: 10.1016/j.cor.2013.07.021_bib20
  article-title: Design of Yagi–Uda antenna using biogeography based optimization
  publication-title: IEEE Transactions on Antennas and Propagation
  doi: 10.1109/TAP.2010.2055778
SSID ssj0000721
Score 2.3154533
Snippet Biogeography-based optimization (BBO) is a powerful population-based algorithm inspired by biogeography and has been extensively applied to many science and...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 125
SubjectTerms Algorithmics. Computability. Computer arithmetics
Algorithms
Applied sciences
Biogeography
Biogeography-based optimization
Computer science; control theory; systems
Design of experiments
Exact sciences and technology
Experimental design
Global numerical optimization
Mathematical analysis
Mathematical models
Mathematical problems
Mathematics
Migration
Operations research
Operators
Optimization algorithms
Orthogonal experimental design (OED)
Orthogonal learning
Performance enhancement
Polyphyletic migration operator
Probability and statistics
Sciences and techniques of general use
Searching
Statistics
Strategy
Studies
Theoretical computing
Vector space
Title Enhancing the performance of biogeography-based optimization using polyphyletic migration operator and orthogonal learning
URI https://dx.doi.org/10.1016/j.cor.2013.07.021
https://www.proquest.com/docview/1442811100
https://www.proquest.com/docview/1475533837
https://www.proquest.com/docview/1530979651
Volume 41
WOSCitedRecordID wos000326610500014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-765X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000721
  issn: 0305-0548
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdKh9AmxEcBrTAmI_FEFCmfdfxYsbJugoLEKhVeonzYZVOXVOs6Dd75vzl_NltFgQdeIje-NJHu5_Pd2fczQq8pJeBEh77LC5ZBgCLsYE48N2dRRJNeQrNcUua_J6NRMpnQT63WT1MLczUjVZVcX9P5f1U13ANli9LZf1C3_VO4AW1QOlxB7XD9K8UPqm-CQ8NUQTUKA8AvzE_rKdMs1a6YwUqnBqNxrqsxnaVMHczr2XcQELzchXN-OtUoqedMLsrLBQex3lNPZR5RnzwxbTq65rSIhcSWelLuudPsQjYLfTj-eHzUHx06E7Dq9qCvA2h_GfdHzuehTetOQOzrEDqcg7HmoNXpCn-VqDQVNA0DF4qNg7Fi2jTWWNFgaXPqq6JoPTP7ivZozeir_MMZ6EwQvPqhZGNVddc3CbZvTXx2O2JAAJXg-t1BWwGBCKuNtvpHg8nxakonsoDPfrBZHpcbBW-99ncOzv15toBhx9V5KWtTv_RnTh6hBzoQwX0FoMeoxaoOeqiDEqxN_qKD7pnSCOg1SjXdHbTT4LOEXx8sCTCIb4tARvGAP0E_LCwxiOAGLHHN8ToscROWWMISN2GJLSyxgSUGWOIVLLGB5VM0fjc4eTt09bkfbhHFwaXrl3kUxwkLeyQLIJzl1Cs5z3ivYJSWzOOMQJPk1I8YJ1wkMUvKwyzIIVYByxg-Q-2qrtguwkUM_j2EHHEpqQHLjERZFJM8zLhPeZl3kWeUlRaaFF-czTJLze7HsxT0mwr9ph5JQb9d9MY-MleMMJuEI4OAVLu0ylVNAbybHtu_gRb7IoPULtoz8Em17VlAFB8FiS84ILvole2G6UKsAWYVq5dChsSxTEttkIlDT5jw2H_-p-94gbbFIFc5yT3UvrxYspfobnEF8LrY18PoF_NK8jw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+the+performance+of+biogeography-based+optimization+using+polyphyletic+migration+operator+and+orthogonal+learning&rft.jtitle=Computers+%26+operations+research&rft.au=GUOJIANG+XIONG&rft.au=DONGYUAN+SHI&rft.au=XIANZHONG+DUAN&rft.date=2014&rft.pub=Elsevier&rft.issn=0305-0548&rft.volume=41&rft.spage=125&rft.epage=139&rft_id=info:doi/10.1016%2Fj.cor.2013.07.021&rft.externalDBID=n%2Fa&rft.externalDocID=27868560
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-0548&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-0548&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-0548&client=summon