Sachs’ free data in real connection variables

A bstract We discuss the Hamiltonian dynamics of general relativity with real connection variables on a null foliation, and use the Newman-Penrose formalism to shed light on the geometric meaning of the various constraints. We identify the equivalent of Sachs’ constraint-free initial data as project...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The journal of high energy physics Ročník 2017; číslo 11; s. 1 - 44
Hlavní autoři: De Paoli, Elena, Speziale, Simone
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2017
Springer Nature B.V
Springer
SpringerOpen
Témata:
ISSN:1029-8479, 1126-6708, 1029-8479
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A bstract We discuss the Hamiltonian dynamics of general relativity with real connection variables on a null foliation, and use the Newman-Penrose formalism to shed light on the geometric meaning of the various constraints. We identify the equivalent of Sachs’ constraint-free initial data as projections of connection components related to null rotations, i.e. the translational part of the ISO(2) group stabilising the internal null direction soldered to the hypersurface. A pair of second-class constraints reduces these connection components to the shear of a null geodesic congruence, thus establishing equivalence with the second-order formalism, which we show in details at the level of symplectic potentials. A special feature of the first-order formulation is that Sachs’ propagating equations for the shear, away from the initial hypersurface, are turned into tertiary constraints; their role is to preserve the relation between connection and shear under retarded time evolution. The conversion of wave-like propagating equations into constraints is possible thanks to an algebraic Bianchi identity; the same one that allows one to describe the radiative data at future null infinity in terms of a shear of a (non-geodesic) asymptotic null vector field in the physical spacetime. Finally, we compute the modification to the spin coefficients and the null congruence in the presence of torsion.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1029-8479
1126-6708
1029-8479
DOI:10.1007/JHEP11(2017)205