Sentiment Analysis of Online Reviews for 5A-Level Tourist Attractions

This study aims to explore tourists’ sentiment tendencies and focal points by analyzing online reviews of 5A-level tourist attractions. After conducting data cleaning, word segmentation, stop-word filtering, and part-of-speech tagging, we preprocessed the review texts and utilized the ROSTCM6 softwa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Advanced Computational Intelligence and Intelligent Informatics Jg. 29; H. 2; S. 417 - 422
Hauptverfasser: Meng, Lianchao, Chen, Jingjing, Song, Jian, Sun, Guoxia
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Tokyo Fuji Technology Press Ltd 20.03.2025
富士技術出版株式会社
Fuji Technology Press Co. Ltd
Schlagworte:
ISSN:1343-0130, 1883-8014
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study aims to explore tourists’ sentiment tendencies and focal points by analyzing online reviews of 5A-level tourist attractions. After conducting data cleaning, word segmentation, stop-word filtering, and part-of-speech tagging, we preprocessed the review texts and utilized the ROSTCM6 software for sentiment analysis. The study found that most tourists hold a positive attitude toward their experiences at 5A-level attractions, though there remains room for improvement in certain facilities and services. This research provides valuable feedback for attraction managers to enhance the visitor experience.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1343-0130
1883-8014
DOI:10.20965/jaciii.2025.p0417