Multi-Behavior Enhanced Heterogeneous Graph Convolutional Networks Recommendation Algorithm based on Feature-Interaction
Graph convolution neural networks have shown powerful ability in recommendation, thanks to extracting the user-item collaboration signal from users' historical interaction information. However, many existing studies often learn the final embedded representation of items and users through IDs of...
Saved in:
| Published in: | Applied artificial intelligence Vol. 37; no. 1 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Philadelphia
Taylor & Francis
31.12.2023
Taylor & Francis Ltd Taylor & Francis Group |
| Subjects: | |
| ISSN: | 0883-9514, 1087-6545 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Graph convolution neural networks have shown powerful ability in recommendation, thanks to extracting the user-item collaboration signal from users' historical interaction information. However, many existing studies often learn the final embedded representation of items and users through IDs of user and item, which cannot make well explanation why user choose the item. By making good use of item's attribute, the networks will gain better interpretability. In this article, we construct a heterogeneous tripartite graph consisting of user-item-feature, and propose the attention interaction graph convolutional neural network recommendation algorithm (ATGCN). We embed multi-feature fusion of users and items into the user feature interaction layer by using multi-head-attention, which explore the user's potential preference to update the user's embedded representation. Through the neighborhood aggregation of graph convolution, the feature neighbors' aggregation of items is constructed to achieve higher-order feature fusions, and the neighborhood aggregation of users and items is carried out on the historical interaction information. Then, the final embedding vector representations of user and item are obtained after many iterations. We verify the effectiveness of our proposed method on three publicly available datasets and ATGCN has improved 1.59%, 2.03%, and 1.27% in normalized discounted cumulative gain (NDCG), Precision and Recall, respectively. |
|---|---|
| AbstractList | Graph convolution neural networks have shown powerful ability in recommendation, thanks to extracting the user-item collaboration signal from users’ historical interaction information. However, many existing studies often learn the final embedded representation of items and users through IDs of user and item, which cannot make well explanation why user choose the item. By making good use of item’s attribute, the networks will gain better interpretability. In this article, we construct a heterogeneous tripartite graph consisting of user-item-feature, and propose the attention interaction graph convolutional neural network recommendation algorithm (ATGCN). We embed multi-feature fusion of users and items into the user feature interaction layer by using multi-head-attention, which explore the user’s potential preference to update the user’s embedded representation. Through the neighborhood aggregation of graph convolution, the feature neighbors’ aggregation of items is constructed to achieve higher-order feature fusions, and the neighborhood aggregation of users and items is carried out on the historical interaction information. Then, the final embedding vector representations of user and item are obtained after many iterations. We verify the effectiveness of our proposed method on three publicly available datasets and ATGCN has improved 1.59%, 2.03%, and 1.27% in normalized discounted cumulative gain (NDCG), Precision and Recall, respectively. |
| Author | Zhao, Fangtao Chen, Zheng Li, Yang Ma, Li Fu, Yingxun |
| Author_xml | – sequence: 1 givenname: Yang surname: Li fullname: Li, Yang organization: North China University of Technology – sequence: 2 givenname: Fangtao surname: Zhao fullname: Zhao, Fangtao organization: North China University of Technology – sequence: 3 givenname: Zheng surname: Chen fullname: Chen, Zheng organization: North China University of Technology – sequence: 4 givenname: Yingxun surname: Fu fullname: Fu, Yingxun organization: North China University of Technology – sequence: 5 givenname: Li surname: Ma fullname: Ma, Li email: mali@ncut.edu.cn organization: North China University of Technology |
| BookMark | eNqFkU9v1DAQxSNUJLaFj4AUiXMWO7ETR1woq_5ZqQUJwdmatce7XhJ7sZ2Wfvs63fbCAU6WZt77afzeaXHivMOieE_JkhJBPhIhmp5TtqxJ3SzrmlDK2KtikZdd1XLGT4rFrKlm0ZviNMY9IYR2HV0Uf26nIdnqC-7gzvpQXrgdOIW6vMaEwW_RoZ9ieRXgsCtX3t35YUrWOxjKr5juffgVy--o_Dii0zBvyvNh64NNu7HcQMykPLpESFPAau0yFNQse1u8NjBEfPf8nhU_Ly9-rK6rm29X69X5TaUYp6kSvN7kbxHdNAgtGG1qqjeK666DVgkUAKYGpYB0gjMUujaoagG1wN6wljVnxfrI1R728hDsCOFBerDyaeDDVkJIVg0ojWjajWhIz3jLOpEppFO6160xfU62zawPR9Yh-N8TxiT3fgo5iygb0jDeM9bPqk9HlQo-xoBGKpueokkB7CApkXNt8qU2Odcmn2vLbv6X--Xm__k-H33WGR9GyNUMWiZ4GHwwIXdq85H_RjwC2QaydQ |
| CitedBy_id | crossref_primary_10_1016_j_eswa_2025_126836 crossref_primary_10_3390_fi16080270 crossref_primary_10_1080_10589759_2023_2273525 |
| Cites_doi | 10.48550/arXiv.1706.02263 10.1145/3501815 10.1016/j.knosys.2022.109185 10.1016/j.future.2021.06.007 10.1145/3565575 10.1007/978-3-031-15937-4_9 10.1145/3437963.3441746 10.1145/2827872 10.1145/3560487 10.1145/3397271.3401072 10.1145/3535101 10.1145/3292500.3330673 10.1145/3397271.3401063 10.1145/3308558.3313705 10.1109/TKDE.2020.3040772 10.1145/3292500.3330989 10.48550/arXiv.2109.11898 10.1145/3394486.3403373 10.48550/arXiv.1205.2618 10.1145/3292500.3330961 10.1109/TKDE.2020.3033673 10.48550/arXiv.1412.6980 10.1007/978-0-387-85820-3_1 10.1007/978-3-030-67664-3_21 10.1145/3038912.3052569 10.1145/3397271.3401123 10.1109/ICDE48307.2020.00019 |
| ContentType | Journal Article |
| Copyright | 2023 The Author(s). Published with license by Taylor & Francis Group, LLC. 2023 2023 The Author(s). Published with license by Taylor & Francis Group, LLC. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2023 The Author(s). Published with license by Taylor & Francis Group, LLC. 2023 – notice: 2023 The Author(s). Published with license by Taylor & Francis Group, LLC. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 0YH AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D DOA |
| DOI | 10.1080/08839514.2023.2201144 |
| DatabaseName | Taylor & Francis Open Access CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Directory of Open Access Journals |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 0YH name: Taylor & Francis Open Access url: https://www.tandfonline.com sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1087-6545 |
| ExternalDocumentID | oai_doaj_org_article_f836b830945647828a07cd9d6ff90236 10_1080_08839514_2023_2201144 2201144 |
| Genre | Research Article |
| GrantInformation_xml | – fundername: National Key R&D Program of China grantid: 2018YFB1800302 – fundername: Beijing Natural Science Foundation grantid: KZ201810009011; 4202020; L192021; 4212018; 4234083 – fundername: Research Start-up Fund of North China University of Technology and Jilin Province Science and Technology Development Plan Project grantid: 20190201180JC; 20200401076G× – fundername: Natural Science Foundation of China grantid: 62001007 |
| GroupedDBID | .4S .7F .DC .QJ 0YH 23M 2DF 30N 4.4 5GY 5VS 8VB AAENE AAFWJ AAJMT ABCCY ABDBF ABFIM ABHAV ABIVO ABPEM ABTAI ACGEJ ACGFS ACGOD ACNCT ACTIO ACUHS ADCVX ADMLS ADXPE AEISY AEMOZ AENEX AEOZL AEPSL AEYOC AFKVX AFPKN AGMYJ AHQJS AIJEM AIYEW AJWEG AKVCP ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD ARCSS AVBZW BLEHA CCCUG CE4 CS3 DGEBU DKSSO EAP EBR EBS EBU ECS EDO EMK EPL EST ESX E~A E~B F5P GROUPED_DOAJ GTTXZ H13 HF~ HZ~ H~9 H~P I-F J.P K1G KYCEM LJTGL M4Z MK~ NA5 NX~ O9- P2P PQQKQ QWB S-T SNACF TDBHL TFL TFW TH9 TNC TTHFI TUS TWF UT5 UU3 ZL0 ~S~ AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D RIG |
| ID | FETCH-LOGICAL-c451t-852b2020d33ea6afdf21dbc5d77a6c8e8aaf2acca07854e8d2fec28a28e9f4643 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000970909500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0883-9514 |
| IngestDate | Fri Oct 03 12:52:38 EDT 2025 Mon Jun 30 14:17:49 EDT 2025 Sat Nov 29 03:21:26 EST 2025 Tue Nov 18 22:35:55 EST 2025 Mon Oct 20 23:46:46 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | open-access: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c451t-852b2020d33ea6afdf21dbc5d77a6c8e8aaf2acca07854e8d2fec28a28e9f4643 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.tandfonline.com/doi/abs/10.1080/08839514.2023.2201144 |
| PQID | 3034594496 |
| PQPubID | 53050 |
| ParticipantIDs | crossref_citationtrail_10_1080_08839514_2023_2201144 crossref_primary_10_1080_08839514_2023_2201144 proquest_journals_3034594496 informaworld_taylorfrancis_310_1080_08839514_2023_2201144 doaj_primary_oai_doaj_org_article_f836b830945647828a07cd9d6ff90236 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-12-31 |
| PublicationDateYYYYMMDD | 2023-12-31 |
| PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-31 day: 31 |
| PublicationDecade | 2020 |
| PublicationPlace | Philadelphia |
| PublicationPlace_xml | – name: Philadelphia |
| PublicationTitle | Applied artificial intelligence |
| PublicationYear | 2023 |
| Publisher | Taylor & Francis Taylor & Francis Ltd Taylor & Francis Group |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd – name: Taylor & Francis Group |
| References | e_1_3_2_27_1 e_1_3_2_28_1 e_1_3_2_29_1 e_1_3_2_20_1 e_1_3_2_21_1 e_1_3_2_22_1 e_1_3_2_24_1 e_1_3_2_25_1 e_1_3_2_26_1 Hamilton W. (e_1_3_2_6_1) 2017; 30 e_1_3_2_16_1 e_1_3_2_9_1 e_1_3_2_17_1 e_1_3_2_8_1 e_1_3_2_18_1 e_1_3_2_7_1 e_1_3_2_19_1 e_1_3_2_2_1 e_1_3_2_30_1 e_1_3_2_10_1 e_1_3_2_11_1 e_1_3_2_12_1 e_1_3_2_5_1 e_1_3_2_13_1 e_1_3_2_4_1 e_1_3_2_14_1 e_1_3_2_3_1 e_1_3_2_15_1 Vaswani A. (e_1_3_2_23_1) 2017; 30 |
| References_xml | – ident: e_1_3_2_2_1 doi: 10.48550/arXiv.1706.02263 – ident: e_1_3_2_16_1 doi: 10.1145/3501815 – ident: e_1_3_2_14_1 doi: 10.1016/j.knosys.2022.109185 – ident: e_1_3_2_12_1 doi: 10.1016/j.future.2021.06.007 – ident: e_1_3_2_11_1 doi: 10.1145/3565575 – ident: e_1_3_2_18_1 doi: 10.1007/978-3-031-15937-4_9 – ident: e_1_3_2_19_1 doi: 10.1145/3437963.3441746 – ident: e_1_3_2_7_1 doi: 10.1145/2827872 – ident: e_1_3_2_3_1 doi: 10.1145/3560487 – ident: e_1_3_2_10_1 doi: 10.1145/3397271.3401072 – ident: e_1_3_2_25_1 doi: 10.1145/3535101 – ident: e_1_3_2_5_1 doi: 10.1145/3292500.3330673 – ident: e_1_3_2_8_1 doi: 10.1145/3397271.3401063 – ident: e_1_3_2_4_1 doi: 10.1145/3308558.3313705 – ident: e_1_3_2_15_1 doi: 10.1109/TKDE.2020.3040772 – ident: e_1_3_2_24_1 doi: 10.1145/3292500.3330989 – ident: e_1_3_2_29_1 doi: 10.48550/arXiv.2109.11898 – ident: e_1_3_2_17_1 doi: 10.1145/3394486.3403373 – ident: e_1_3_2_20_1 doi: 10.48550/arXiv.1205.2618 – ident: e_1_3_2_28_1 doi: 10.1145/3292500.3330961 – ident: e_1_3_2_27_1 doi: 10.1109/TKDE.2020.3033673 – volume: 30 year: 2017 ident: e_1_3_2_6_1 article-title: Inductive representation learning on large graphs publication-title: Advances in Neural Information Processing Systems – ident: e_1_3_2_13_1 doi: 10.48550/arXiv.1412.6980 – ident: e_1_3_2_21_1 doi: 10.1007/978-0-387-85820-3_1 – ident: e_1_3_2_26_1 doi: 10.1007/978-3-030-67664-3_21 – ident: e_1_3_2_9_1 doi: 10.1145/3038912.3052569 – volume: 30 year: 2017 ident: e_1_3_2_23_1 article-title: Attention is all you need publication-title: Advances in Neural Information Processing Systems – ident: e_1_3_2_22_1 doi: 10.1145/3397271.3401123 – ident: e_1_3_2_30_1 doi: 10.1109/ICDE48307.2020.00019 |
| SSID | ssj0001771 |
| Score | 2.375273 |
| Snippet | Graph convolution neural networks have shown powerful ability in recommendation, thanks to extracting the user-item collaboration signal from users' historical... Graph convolution neural networks have shown powerful ability in recommendation, thanks to extracting the user-item collaboration signal from users’ historical... |
| SourceID | doaj proquest crossref informaworld |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Algorithms Artificial neural networks Embedding Graph neural networks Neural networks Representations |
| SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYq1EMv9EFRl1LkA1cvGz8S-0gRj9OqB5C4WY4fBYnNViEgfj4zjoOgPeyl11HsWDPjeSQz3xBy6GJqlVGcpVA5JlMwDPwMVllUSerKpza1edhEs1zq62vz69WoL6wJG-GBR8YdJS3qVgvIQhS2RXLtFo0PJtQpGUQ_R-u7aMyUTBUbXDU51YIrJBjEEHLq3UFUbaAhaY6Dw-ccHaCUb7xSBu__C7r0H1Od_c_ZJ7JdAkd6PB74M3kXuy_k4zSUgZY7ukOeckstK7iHPT3tbvJPfnqBhS9r0JcIyT49R6BqerLuHovuwd7LsST8nmJOulrFMm-JHt_9Xve3w82Kos8LFEgYOT70keUPimNvxFdydXZ6eXLByngF5qWqBqYVb4EHiyBEdLVLIfEqtF6FpnG111E7l7gDCUMUoWTUgafogf9cR5MkRDK7ZKtbd_EboVo5JZ2QisdaKgXbCced9CLw1i-EnBE5sdf6gj2OIzDubDVBlBapWJSKLVKZkfnLsj8j-MamBT9Rdi8PI3Z2JoBG2aJRdpNGzYh5LXk75E8naZxzYsWGA-xPamKLMYAlwAFlpDT13v8433fyAV85ok3uk62hf4g_yHv_ONze9wf5HjwDMGEGkA priority: 102 providerName: Directory of Open Access Journals |
| Title | Multi-Behavior Enhanced Heterogeneous Graph Convolutional Networks Recommendation Algorithm based on Feature-Interaction |
| URI | https://www.tandfonline.com/doi/abs/10.1080/08839514.2023.2201144 https://www.proquest.com/docview/3034594496 https://doaj.org/article/f836b830945647828a07cd9d6ff90236 |
| Volume | 37 |
| WOSCitedRecordID | wos000970909500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1087-6545 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001771 issn: 0883-9514 databaseCode: DOA dateStart: 20220101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVAWR databaseName: Taylor & Francis Journals Complete customDbUrl: eissn: 1087-6545 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001771 issn: 0883-9514 databaseCode: TFW dateStart: 19870101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis – providerCode: PRVAWR databaseName: Taylor & Francis Open Access customDbUrl: eissn: 1087-6545 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001771 issn: 0883-9514 databaseCode: 0YH dateStart: 20221201 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELag4sCFUh5ioax84Oqy8SOxj6XqsqdVD0WUk-X40VbqJlWSrfj5eBxnxUOoh_aYKGPF4xnP2PrmG4Q-GR9qoQQlwRWG8OAUiXEGUBZF4LKwoQ51ajZRrdfy4kKdZTRhn2GVcIYOI1FE2qvBuU3dT4i4z9ExWEwM4EaEsiMKIYwDI2jM7AHUd778vtuLiyoduUCCgMhUw_O_Uf6ITonE_y8K03-27BSHlvuPMIOX6EVOQvHxaDUH6IlvXqH9qcEDzv7-Gv1M5bkkcyh2-LS5SoABvAIQTRttz7fbHn8F0mt80jZ32Y7j2OsRXt5jON9uNj73bsLHN5dtdz1cbTDET4fjK8hCt50n6XJyrLN4g74tT89PViS3aiCWi2IgUtA6zmXhGPOmNMEFWrjaCldVprTSS2MCNdFaYkYiuJeOBm-pNFR6FXjMit6ivaZt_DuEpTCCG8YF9SUXIg7HDDXcMkdru2B8hvi0RNpmHnNop3Gji4nuNGtXg3Z11u4MHe3Ebkcij_sEvsD67z4GHu70ou0udXZrHSQra8niGVlA0W6c0aKyTrkyBAXc_DOkfrcePaRrmDD2TNHsnh84nExN540likQNCMW5Kt8_YOgP6Dk8joSVh2hv6Lb-I3pm74brvpujp4sfq3m6nZgnd_oF_csZ1g |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagINFLy6tioQUfuLps_EjsY1u1XUTZU5HKyXL8aCt1E5TNVv35eBxnVUCoB7g6GSt25q2ZbxD6aHyohRKUBFcYwoNTJNoZqLIoApeFDXWo07CJaj6XFxfqfi8MlFVCDB0GoIikq0G4IRk9lsR9ipLBomcAKRHK9inYMM4foydCVhK4fPp9ttbGRZWCLiAhQDN28fxtm1_sU4Lx_w3E9A-lnSzRyfb_OMNztJX9UHwwMM4L9Mg3L9H2OOMBZ5F_he5Shy7JMIodPm6uUs0AnkEdTRvZz7erJT4F3Gt81Da3mZXj3vOhwnyJIcRdLHwe34QPbi7b7rq_WmAwoQ7HJXBEV50nKT85tFq8Rt9Ojs-PZiRPayCWi6InUtA6nmXqGPOmNMEFWrjaCldVprTSS2MCNZFholMiuJeOBm-pNFR6FXh0jHbQRtM2_g3CUhjBDeOC-pILEbdjhhpumaO1nTI-QXz8R9pmKHOYqHGjixHxNN-uhtvV-XYnaH9N9mPA8niI4BAYYP0yQHGnhba71FmydZCsrCWLYbKAvt14omllnXJlCArg-SdI3Wcf3adMTBjGpmj2wAfsjryms26JJPEGhOJclW__YesP6Nns_OuZPvs8__IObcKjAb9yF2303crvoaf2tr9edu-TPP0EEIIb1g |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagINQL5Sm2FPCBq8vGj8Q-ltKlCLTqoYjeLMePtlI3qbLZqj-_HsdZAVXVA1yTzCgez8vWzDcIfTQ-1EIJSoIrDOHBKRLjDFRZFIHLwoY61GnYRDWfy5MTdZSrCZe5rBLO0GEAiki-Goz70oWxIu5TNAwWEwO4EaFsl0II4_whehRTZwGKfTz7tXbGRZXOXEBCgGZs4rmLzR_hKaH4_4Vhestnp0A02_oPS3iGnuYsFO8NavMcPfDNC7Q1TnjA2eBfouvUn0syiGKHD5qzVDGAD6GKpo3K59vVEn8F1Gu83zZXWZEj7_lQX77EcMBdLHwe3oT3Lk7b7rw_W2AIoA7HR5CGrjpP0u3k0GjxCv2cHRzvH5I8q4FYLoqeSEHruJapY8yb0gQXaOFqK1xVmdJKL40J1ER1iSmJ4F46Gryl0lDpVeAxLXqNNpq28W8QlsIIbhgX1JdciMiOGWq4ZY7Wdsr4BPFxi7TNQOYwT-NCFyPeaZauBunqLN0J2l2TXQ5IHvcRfIb9X38MQNzpQdud6mzXOkhW1pLFQ7KArt24omllnXJlCArA-SdI_a49uk_3MGEYmqLZPT-wM6qazp4lkkQJCMW5Krf_gfUH9OToy0z_-Db__hZtwpsBvHIHbfTdyr9Dj-1Vf77s3idrugH6CRrE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Behavior+Enhanced+Heterogeneous+Graph+Convolutional+Networks+Recommendation+Algorithm+based+on+Feature-Interaction&rft.jtitle=Applied+artificial+intelligence&rft.au=Li%2C+Yang&rft.au=Zhao%2C+Fangtao&rft.au=Chen%2C+Zheng&rft.au=Fu%2C+Yingxun&rft.date=2023-12-31&rft.pub=Taylor+%26+Francis&rft.issn=0883-9514&rft.eissn=1087-6545&rft.volume=37&rft.issue=1&rft_id=info:doi/10.1080%2F08839514.2023.2201144&rft.externalDBID=0YH&rft.externalDocID=2201144 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0883-9514&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0883-9514&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0883-9514&client=summon |