Multi-Behavior Enhanced Heterogeneous Graph Convolutional Networks Recommendation Algorithm based on Feature-Interaction

Graph convolution neural networks have shown powerful ability in recommendation, thanks to extracting the user-item collaboration signal from users' historical interaction information. However, many existing studies often learn the final embedded representation of items and users through IDs of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied artificial intelligence Jg. 37; H. 1
Hauptverfasser: Li, Yang, Zhao, Fangtao, Chen, Zheng, Fu, Yingxun, Ma, Li
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Philadelphia Taylor & Francis 31.12.2023
Taylor & Francis Ltd
Taylor & Francis Group
Schlagworte:
ISSN:0883-9514, 1087-6545
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Graph convolution neural networks have shown powerful ability in recommendation, thanks to extracting the user-item collaboration signal from users' historical interaction information. However, many existing studies often learn the final embedded representation of items and users through IDs of user and item, which cannot make well explanation why user choose the item. By making good use of item's attribute, the networks will gain better interpretability. In this article, we construct a heterogeneous tripartite graph consisting of user-item-feature, and propose the attention interaction graph convolutional neural network recommendation algorithm (ATGCN). We embed multi-feature fusion of users and items into the user feature interaction layer by using multi-head-attention, which explore the user's potential preference to update the user's embedded representation. Through the neighborhood aggregation of graph convolution, the feature neighbors' aggregation of items is constructed to achieve higher-order feature fusions, and the neighborhood aggregation of users and items is carried out on the historical interaction information. Then, the final embedding vector representations of user and item are obtained after many iterations. We verify the effectiveness of our proposed method on three publicly available datasets and ATGCN has improved 1.59%, 2.03%, and 1.27% in normalized discounted cumulative gain (NDCG), Precision and Recall, respectively.
AbstractList Graph convolution neural networks have shown powerful ability in recommendation, thanks to extracting the user-item collaboration signal from users’ historical interaction information. However, many existing studies often learn the final embedded representation of items and users through IDs of user and item, which cannot make well explanation why user choose the item. By making good use of item’s attribute, the networks will gain better interpretability. In this article, we construct a heterogeneous tripartite graph consisting of user-item-feature, and propose the attention interaction graph convolutional neural network recommendation algorithm (ATGCN). We embed multi-feature fusion of users and items into the user feature interaction layer by using multi-head-attention, which explore the user’s potential preference to update the user’s embedded representation. Through the neighborhood aggregation of graph convolution, the feature neighbors’ aggregation of items is constructed to achieve higher-order feature fusions, and the neighborhood aggregation of users and items is carried out on the historical interaction information. Then, the final embedding vector representations of user and item are obtained after many iterations. We verify the effectiveness of our proposed method on three publicly available datasets and ATGCN has improved 1.59%, 2.03%, and 1.27% in normalized discounted cumulative gain (NDCG), Precision and Recall, respectively.
Author Zhao, Fangtao
Chen, Zheng
Li, Yang
Ma, Li
Fu, Yingxun
Author_xml – sequence: 1
  givenname: Yang
  surname: Li
  fullname: Li, Yang
  organization: North China University of Technology
– sequence: 2
  givenname: Fangtao
  surname: Zhao
  fullname: Zhao, Fangtao
  organization: North China University of Technology
– sequence: 3
  givenname: Zheng
  surname: Chen
  fullname: Chen, Zheng
  organization: North China University of Technology
– sequence: 4
  givenname: Yingxun
  surname: Fu
  fullname: Fu, Yingxun
  organization: North China University of Technology
– sequence: 5
  givenname: Li
  surname: Ma
  fullname: Ma, Li
  email: mali@ncut.edu.cn
  organization: North China University of Technology
BookMark eNqFkU9v1DAQxSNUJLaFj4AUiXMWO7ETR1woq_5ZqQUJwdmatce7XhJ7sZ2Wfvs63fbCAU6WZt77afzeaXHivMOieE_JkhJBPhIhmp5TtqxJ3SzrmlDK2KtikZdd1XLGT4rFrKlm0ZviNMY9IYR2HV0Uf26nIdnqC-7gzvpQXrgdOIW6vMaEwW_RoZ9ieRXgsCtX3t35YUrWOxjKr5juffgVy--o_Dii0zBvyvNh64NNu7HcQMykPLpESFPAau0yFNQse1u8NjBEfPf8nhU_Ly9-rK6rm29X69X5TaUYp6kSvN7kbxHdNAgtGG1qqjeK666DVgkUAKYGpYB0gjMUujaoagG1wN6wljVnxfrI1R728hDsCOFBerDyaeDDVkJIVg0ojWjajWhIz3jLOpEppFO6160xfU62zawPR9Yh-N8TxiT3fgo5iygb0jDeM9bPqk9HlQo-xoBGKpueokkB7CApkXNt8qU2Odcmn2vLbv6X--Xm__k-H33WGR9GyNUMWiZ4GHwwIXdq85H_RjwC2QaydQ
CitedBy_id crossref_primary_10_1016_j_eswa_2025_126836
crossref_primary_10_3390_fi16080270
crossref_primary_10_1080_10589759_2023_2273525
Cites_doi 10.48550/arXiv.1706.02263
10.1145/3501815
10.1016/j.knosys.2022.109185
10.1016/j.future.2021.06.007
10.1145/3565575
10.1007/978-3-031-15937-4_9
10.1145/3437963.3441746
10.1145/2827872
10.1145/3560487
10.1145/3397271.3401072
10.1145/3535101
10.1145/3292500.3330673
10.1145/3397271.3401063
10.1145/3308558.3313705
10.1109/TKDE.2020.3040772
10.1145/3292500.3330989
10.48550/arXiv.2109.11898
10.1145/3394486.3403373
10.48550/arXiv.1205.2618
10.1145/3292500.3330961
10.1109/TKDE.2020.3033673
10.48550/arXiv.1412.6980
10.1007/978-0-387-85820-3_1
10.1007/978-3-030-67664-3_21
10.1145/3038912.3052569
10.1145/3397271.3401123
10.1109/ICDE48307.2020.00019
ContentType Journal Article
Copyright 2023 The Author(s). Published with license by Taylor & Francis Group, LLC. 2023
2023 The Author(s). Published with license by Taylor & Francis Group, LLC. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Author(s). Published with license by Taylor & Francis Group, LLC. 2023
– notice: 2023 The Author(s). Published with license by Taylor & Francis Group, LLC. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 0YH
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOA
DOI 10.1080/08839514.2023.2201144
DatabaseName Taylor & Francis Open Access
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 0YH
  name: Taylor & Francis Open Access
  url: https://www.tandfonline.com
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1087-6545
ExternalDocumentID oai_doaj_org_article_f836b830945647828a07cd9d6ff90236
10_1080_08839514_2023_2201144
2201144
Genre Research Article
GrantInformation_xml – fundername: National Key R&D Program of China
  grantid: 2018YFB1800302
– fundername: Beijing Natural Science Foundation
  grantid: KZ201810009011; 4202020; L192021; 4212018; 4234083
– fundername: Research Start-up Fund of North China University of Technology and Jilin Province Science and Technology Development Plan Project
  grantid: 20190201180JC; 20200401076G×
– fundername: Natural Science Foundation of China
  grantid: 62001007
GroupedDBID .4S
.7F
.DC
.QJ
0YH
23M
2DF
30N
4.4
5GY
5VS
8VB
AAENE
AAFWJ
AAJMT
ABCCY
ABDBF
ABFIM
ABHAV
ABIVO
ABPEM
ABTAI
ACGEJ
ACGFS
ACGOD
ACNCT
ACTIO
ACUHS
ADCVX
ADMLS
ADXPE
AEISY
AEMOZ
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFPKN
AGMYJ
AHQJS
AIJEM
AIYEW
AJWEG
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
ARCSS
AVBZW
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
EAP
EBR
EBS
EBU
ECS
EDO
EMK
EPL
EST
ESX
E~A
E~B
F5P
GROUPED_DOAJ
GTTXZ
H13
HF~
HZ~
H~9
H~P
I-F
J.P
K1G
KYCEM
LJTGL
M4Z
MK~
NA5
NX~
O9-
P2P
PQQKQ
QWB
S-T
SNACF
TDBHL
TFL
TFW
TH9
TNC
TTHFI
TUS
TWF
UT5
UU3
ZL0
~S~
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
RIG
ID FETCH-LOGICAL-c451t-852b2020d33ea6afdf21dbc5d77a6c8e8aaf2acca07854e8d2fec28a28e9f4643
IEDL.DBID DOA
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000970909500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0883-9514
IngestDate Fri Oct 03 12:52:38 EDT 2025
Mon Jun 30 14:17:49 EDT 2025
Sat Nov 29 03:21:26 EST 2025
Tue Nov 18 22:35:55 EST 2025
Mon Oct 20 23:46:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License open-access: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c451t-852b2020d33ea6afdf21dbc5d77a6c8e8aaf2acca07854e8d2fec28a28e9f4643
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/f836b830945647828a07cd9d6ff90236
PQID 3034594496
PQPubID 53050
ParticipantIDs crossref_citationtrail_10_1080_08839514_2023_2201144
crossref_primary_10_1080_08839514_2023_2201144
proquest_journals_3034594496
informaworld_taylorfrancis_310_1080_08839514_2023_2201144
doaj_primary_oai_doaj_org_article_f836b830945647828a07cd9d6ff90236
PublicationCentury 2000
PublicationDate 2023-12-31
PublicationDateYYYYMMDD 2023-12-31
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-31
  day: 31
PublicationDecade 2020
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle Applied artificial intelligence
PublicationYear 2023
Publisher Taylor & Francis
Taylor & Francis Ltd
Taylor & Francis Group
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
– name: Taylor & Francis Group
References e_1_3_2_27_1
e_1_3_2_28_1
e_1_3_2_29_1
e_1_3_2_20_1
e_1_3_2_21_1
e_1_3_2_22_1
e_1_3_2_24_1
e_1_3_2_25_1
e_1_3_2_26_1
Hamilton W. (e_1_3_2_6_1) 2017; 30
e_1_3_2_16_1
e_1_3_2_9_1
e_1_3_2_17_1
e_1_3_2_8_1
e_1_3_2_18_1
e_1_3_2_7_1
e_1_3_2_19_1
e_1_3_2_2_1
e_1_3_2_30_1
e_1_3_2_10_1
e_1_3_2_11_1
e_1_3_2_12_1
e_1_3_2_5_1
e_1_3_2_13_1
e_1_3_2_4_1
e_1_3_2_14_1
e_1_3_2_3_1
e_1_3_2_15_1
Vaswani A. (e_1_3_2_23_1) 2017; 30
References_xml – ident: e_1_3_2_2_1
  doi: 10.48550/arXiv.1706.02263
– ident: e_1_3_2_16_1
  doi: 10.1145/3501815
– ident: e_1_3_2_14_1
  doi: 10.1016/j.knosys.2022.109185
– ident: e_1_3_2_12_1
  doi: 10.1016/j.future.2021.06.007
– ident: e_1_3_2_11_1
  doi: 10.1145/3565575
– ident: e_1_3_2_18_1
  doi: 10.1007/978-3-031-15937-4_9
– ident: e_1_3_2_19_1
  doi: 10.1145/3437963.3441746
– ident: e_1_3_2_7_1
  doi: 10.1145/2827872
– ident: e_1_3_2_3_1
  doi: 10.1145/3560487
– ident: e_1_3_2_10_1
  doi: 10.1145/3397271.3401072
– ident: e_1_3_2_25_1
  doi: 10.1145/3535101
– ident: e_1_3_2_5_1
  doi: 10.1145/3292500.3330673
– ident: e_1_3_2_8_1
  doi: 10.1145/3397271.3401063
– ident: e_1_3_2_4_1
  doi: 10.1145/3308558.3313705
– ident: e_1_3_2_15_1
  doi: 10.1109/TKDE.2020.3040772
– ident: e_1_3_2_24_1
  doi: 10.1145/3292500.3330989
– ident: e_1_3_2_29_1
  doi: 10.48550/arXiv.2109.11898
– ident: e_1_3_2_17_1
  doi: 10.1145/3394486.3403373
– ident: e_1_3_2_20_1
  doi: 10.48550/arXiv.1205.2618
– ident: e_1_3_2_28_1
  doi: 10.1145/3292500.3330961
– ident: e_1_3_2_27_1
  doi: 10.1109/TKDE.2020.3033673
– volume: 30
  year: 2017
  ident: e_1_3_2_6_1
  article-title: Inductive representation learning on large graphs
  publication-title: Advances in Neural Information Processing Systems
– ident: e_1_3_2_13_1
  doi: 10.48550/arXiv.1412.6980
– ident: e_1_3_2_21_1
  doi: 10.1007/978-0-387-85820-3_1
– ident: e_1_3_2_26_1
  doi: 10.1007/978-3-030-67664-3_21
– ident: e_1_3_2_9_1
  doi: 10.1145/3038912.3052569
– volume: 30
  year: 2017
  ident: e_1_3_2_23_1
  article-title: Attention is all you need
  publication-title: Advances in Neural Information Processing Systems
– ident: e_1_3_2_22_1
  doi: 10.1145/3397271.3401123
– ident: e_1_3_2_30_1
  doi: 10.1109/ICDE48307.2020.00019
SSID ssj0001771
Score 2.375273
Snippet Graph convolution neural networks have shown powerful ability in recommendation, thanks to extracting the user-item collaboration signal from users' historical...
Graph convolution neural networks have shown powerful ability in recommendation, thanks to extracting the user-item collaboration signal from users’ historical...
SourceID doaj
proquest
crossref
informaworld
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Artificial neural networks
Embedding
Graph neural networks
Neural networks
Representations
SummonAdditionalLinks – databaseName: Taylor & Francis Online
  dbid: TFW
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQ6oFLoS91W4p86NV0_YjjHCliy6Fa9UCBm-X4AUhsUiVZ1J-Px3FWLQhxaI-JMlZsz9Oe-Qahz7V3RZCWEe6ZJcJJTpS0lFBq3Nw7y2W6Ljj_Xi6X6vKy-pGzCfucVgkxdBiBIpKuBuE2dT9lxH2JgsGjYwAnIowfMjBhAhBBo2cPSX1ni4uNLqZlCrmAggDJVMPz1Ch_WacE4v8AwvSRyk52aLH7H2awh15mJxQfjVzzCm355jXanRo84Czvb9DvVJ5LMoZih0-a65QwgE8hiaaNvOfbdY-_Aeg1Pm6bu8zHcezlmF7eY4hvVyufezfho9urtrsZrlcY7KfD8RV4oevOk3Q4OdZZvEU_Fydnx6ckt2ogVhR0IKpgdZzL3HHujTTBBUZdbQtXlkZa5ZUxgZnILdEjKYRXjgVvmTJM-SqI6BW9Q9tN2_j3CFMT1QJTLl3KGmGNYUUtbXQUo-4oKzpDYtoibTOOObTTuNV0gjvNq6thdXVe3Rk63JD9GoE8niP4Cvu_-RhwuNOLtrvSWax1UFzWiscYuYCi3TijeWld5WQIFWDzz1D1J_foIR3DhLFniubP_MD-xGo6K5ZIMueiqISo5Id_GPoj2oHHEbByH20P3dp_Qi_s3XDTdwdJhO4BGsAXHA
  priority: 102
  providerName: Taylor & Francis
Title Multi-Behavior Enhanced Heterogeneous Graph Convolutional Networks Recommendation Algorithm based on Feature-Interaction
URI https://www.tandfonline.com/doi/abs/10.1080/08839514.2023.2201144
https://www.proquest.com/docview/3034594496
https://doaj.org/article/f836b830945647828a07cd9d6ff90236
Volume 37
WOSCitedRecordID wos000970909500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1087-6545
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001771
  issn: 0883-9514
  databaseCode: DOA
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVAWR
  databaseName: Taylor & Francis Journals Complete
  customDbUrl:
  eissn: 1087-6545
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001771
  issn: 0883-9514
  databaseCode: TFW
  dateStart: 19870101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
– providerCode: PRVAWR
  databaseName: Taylor & Francis Open Access
  customDbUrl:
  eissn: 1087-6545
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001771
  issn: 0883-9514
  databaseCode: 0YH
  dateStart: 20221201
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELag4sAFWh5iaal84OolfsSxj23VZQ_VikOBcrIcP2ilbhalacXP79hxqgKHvXDJYRQn1rw8Y3u-QehjG3wdpWOEB-aI8JITJR0llFpfBe-4zMcF386a1UpdXOgvj1p9pTthIzzwyLhPUXHZKg5ZSJ3KIpmyVeO89jJGndDPk_etGj0lU8UH0yanWmBCnEAMIabanYSqDbREmqfG4XOWFkAh_liVMnj_X9Cl_7jqvP4sdtGLEjjio3HCe-hJ6F6hl1NTBlxs9DX6nUtqScE97PFpd5kP-fEyXXzZgL4ESPbx5wRUjU823V3RPfj2arwSfoNTTrpeh9JvCR9d_9z0V8PlGqc1z2Mgpcjxtg8kbyiOtRFv0NfF6fnJkpT2CsSJmg5E1awFHlSe82CljT4y6ltX-6ax0qmgrI3MgoQhiqhFUJ7F4ID_TAUdBUQyb9FOt-nCO4SpBVNmyueDVCuctaxupYPgDuy90XSGxMRe4wr2eGqBcW3oBFFapGKSVEyRygzNH4b9GsE3tg04TrJ7eDlhZ2cCaJQpGmW2adQM6ceSN0PeOoljnxPDt0zgYFITU5wBDKm4qLUQWr7_H_PbR8_TL0e0yQO0M_S34QN65u6Gq5v-ED2tfiwPszXA83zx_R7QcQfB
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagIMGF8hQLBXzg6pL4FedYqpZFLHsqqJwsx4-2UjdB2WzFz8fjOKsCQj3A1clYsTMvj2e-Qeht450I0lLCPLWEO8mIkrYkZWlc4Z1lMl0XfF1Uy6U6Pa2v18JAWiWcocMIFJF0NQg3BKOnlLh3UTJY9AwgJELZPgUbxvltdEeoSgGXF9_mW21cVunQBSQEaKYqnr9N84t9SjD-v4GY_qG0kyU63v0fa3iIHmQ_FB-MjPMI3fLtY7Q79XjAWeSfoB-pQpdkGMUeH7XnKWcAzyGPpovs57vNGn8A3Gt82LVXmZXj3Msxw3yN4Yi7WvncvgkfXJ51_cVwvsJgQh2OQ-CIbnpPUnxyLLV4ir4cH50czknu1kAsF-VAlKBNXEvhGPNGmuACLV1jhasqI63yyphATWSY6JQI7pWjwVuqDFW-Djw6Rs_QTtu1_jnCpYmagSqX7mUNt8ZQ0UgbfcWoPqq6nCE-_SNtM5Q5dNS41OWEeJp3V8Pu6ry7M7S_Jfs-YnncRPAeGGD7MkBxp4GuP9NZsnVQTDaKxWOygLrduKKisq52MoQa4PlnqL7OPnpIkZgwtk3R7IYP2Jt4TWfdEkkKxkXNeS1f_MPUb9C9-cnnhV58XH56ie7DoxG_cg_tDP3Gv0J37dVwse5fJ3n6CUr6GwM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagIMSF8ihioYAPXF02fsU5ltKliGrVQ4HeLMePbaVuUmWzFT8fj-OseAj1UK5Jxortedoz3yD0rvZOBGkpYZ5awp1kRElbkKIwbuqdZTJdF3w7LudzdXZWneRswlVOq4QYOgxAEUlXg3BfuTBmxL2PgsGiYwAnIpTtUTBhnN9F96LrLICxT2ffN8q4KFPMBSQEaMYinn8N85t5Sij-f2CY_qWzkyGabf-HKTxGj7IXivcHtnmC7vjmKdoeOzzgLPDP0I9Un0syiGKHD5vzlDGAjyCLpo3M59v1Cn8C1Gt80DbXmZHj2PMhv3yFIcBdLn1u3oT3Lxdtd9GfLzEYUIfjI3BD150n6XRyKLTYQV9nh6cHRyT3aiCWi6InStA6zmXqGPNGmuACLVxthStLI63yyphATWSX6JII7pWjwVuqDFW-Cjy6Rc_RVtM2_gXChYl6gSqXbmUNt8ZQUUsbPcWoPMqqmCA-bpG2Gcgc-mlc6mLEO82rq2F1dV7dCdrbkF0NSB43EXyA_d98DEDc6UHbLXSWax0Uk7ViMUgWULUbZzQtraucDKECcP4Jqn7lHt2nc5gwNE3R7IYf2B1ZTWfNEkmmjIuK80q-vMXQb9GDk48zffx5_uUVeghvBvDKXbTVd2v_Gt231_3FqnuTpOknNeMZ8Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Behavior+Enhanced+Heterogeneous+Graph+Convolutional+Networks+Recommendation+Algorithm+based+on+Feature-Interaction&rft.jtitle=Applied+artificial+intelligence&rft.au=Yang+Li&rft.au=Fangtao+Zhao&rft.au=Zheng+Chen&rft.au=Yingxun+Fu&rft.date=2023-12-31&rft.pub=Taylor+%26+Francis+Group&rft.issn=0883-9514&rft.eissn=1087-6545&rft.volume=37&rft.issue=1&rft_id=info:doi/10.1080%2F08839514.2023.2201144&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_f836b830945647828a07cd9d6ff90236
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0883-9514&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0883-9514&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0883-9514&client=summon