Theoretical analysis and second-order approximation of solution of fractal-fractional differential equations with Mittag-Leffler Kernel

Some new uniqueness theorems are proposed and a flexible, efficient numerical algorithm is formulated and analysed for convergence and numerically verified for nonlinear fractal-fractional differential equations with Mittag-Leffler kernel. Under some generalized conditions which admit a wider class...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematical and computer modelling of dynamical systems Ročník 30; číslo 1; s. 814 - 839
Hlavní autoři: Atangana, Abdon, Nwaigwe, Chinedu
Médium: Journal Article
Jazyk:angličtina
Vydáno: Abingdon Taylor & Francis 31.12.2024
Taylor & Francis Ltd
Taylor & Francis Group
Témata:
ISSN:1387-3954, 1744-5051
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Some new uniqueness theorems are proposed and a flexible, efficient numerical algorithm is formulated and analysed for convergence and numerically verified for nonlinear fractal-fractional differential equations with Mittag-Leffler kernel. Under some generalized conditions which admit a wider class of functions than the standard Lipschitz condition, the uniqueness of solution is established. By linearly interpolating between grid points, we design a numerical algorithm. Unlike existing methods, our constructed method avoids any form of grid restriction, uses minimal computation of special functions and is second order accurate under appropriate smoothness conditions. The convergence of the method is fully analysed, and numerical test cases are presented to verify the convergence result.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1387-3954
1744-5051
DOI:10.1080/13873954.2024.2417720