BioPAN: a web-based tool to explore mammalian lipidome metabolic pathways on LIPID MAPS [version 2; peer review: 3 approved]

Lipidomics increasingly describes the quantification using mass spectrometry of all lipids present in a biological sample.  As the power of lipidomics protocols increase, thousands of lipid molecular species from multiple categories can now be profiled in a single experiment.  Observed changes due t...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:F1000 research Ročník 10; s. 4
Hlavní autori: Gaud, Caroline, C. Sousa, Bebiana, Nguyen, An, Fedorova, Maria, Ni, Zhixu, O'Donnell, Valerie B, Wakelam, Michael J.O, Andrews, Simon, Lopez-Clavijo, Andrea F
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Faculty of 1000 Ltd 2021
F1000 Research Limited
F1000 Research Ltd
Predmet:
ISSN:2046-1402, 2046-1402
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Lipidomics increasingly describes the quantification using mass spectrometry of all lipids present in a biological sample.  As the power of lipidomics protocols increase, thousands of lipid molecular species from multiple categories can now be profiled in a single experiment.  Observed changes due to biological differences often encompass large numbers of structurally-related lipids, with these being regulated by enzymes from well-known metabolic pathways.  As lipidomics datasets increase in complexity, the interpretation of their results becomes more challenging.  BioPAN addresses this by enabling the researcher to visualise quantitative lipidomics data in the context of known biosynthetic pathways.  BioPAN provides a list of genes, which could be involved in the activation or suppression of enzymes catalysing lipid metabolism in mammalian tissues.
Bibliografia:new_version
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
No competing interests were disclosed.
ISSN:2046-1402
2046-1402
DOI:10.12688/f1000research.28022.2