BCJ numerators from reduced Pfaffian
A bstract By expanding the reduced Pfaffian in the tree level Cachazo-He-Yuan (CHY) integrands for Yang-Mills (YM) and nonlinear sigma model (NLSM), we can get the Bern-Carrasco-Johansson (BCJ) numerators in Del Duca-Dixon-Maltoni (DDM) form for arbitrary number of particles in any spacetime dimensi...
Uloženo v:
| Vydáno v: | The journal of high energy physics Ročník 2017; číslo 4; s. 1 - 28 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.04.2017
Springer Nature B.V SpringerOpen |
| Témata: | |
| ISSN: | 1029-8479, 1029-8479 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | A
bstract
By expanding the reduced Pfaffian in the tree level Cachazo-He-Yuan (CHY) integrands for Yang-Mills (YM) and nonlinear sigma model (NLSM), we can get the Bern-Carrasco-Johansson (BCJ) numerators in Del Duca-Dixon-Maltoni (DDM) form for arbitrary number of particles in any spacetime dimensions. In this work, we give a set of very straightforward graphic rules based on spanning trees for a direct evaluation of the BCJ numerators for YM and NLSM. Such rules can be derived from the Laplace expansion of the corresponding reduced Pfaffian. For YM, the each one of the (
n
− 2)! DDM form BCJ numerators contains exactly (
n
− 1)! terms, corresponding to the increasing trees with respect to the color order. For NLSM, the number of nonzero numerators is at most (
n
− 2)! − (
n
− 3)!, less than those of several previous constructions. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 1029-8479 1029-8479 |
| DOI: | 10.1007/JHEP04(2017)033 |