A Novel Approach for Solving Quadratic Fractional Programming Problems

In this paper, quadratic fractional programming (QFP) problems involving a factorized or non-factorized objective function and subject to homogenous or non-homogenous constraints are considered. Our proposed approach depends on a computational method that converts the QFP problem into a linear progr...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Croatian Operational Research Review Ročník 9; číslo 2; s. 199 - 209
Hlavní autoři: Sivri, Mustafa, Albayrak, Inci, Temelcan, Gizem
Médium: Journal Article Paper
Jazyk:angličtina
Vydáno: Zagreb Croatian Operational Research Society (CRORS) 01.01.2018
Hrvatsko društvo za operacijska istraživanja
Croatian Operational Research Society
Témata:
ISSN:1848-0225, 1848-9931
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, quadratic fractional programming (QFP) problems involving a factorized or non-factorized objective function and subject to homogenous or non-homogenous constraints are considered. Our proposed approach depends on a computational method that converts the QFP problem into a linear programming (LP) problem by using a Taylor series to solve the problem algebraically. This approach, based on the solution of LP problems, can be applied to various types of nonlinear fractional programming problems containing nonlinear constraint(s), and minimizes the total execution time on iterative operations. To illustrate the solution process, two examples are presented and the proposed approach is compared with other two existing methods for solving QFP problems.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
212381
ISSN:1848-0225
1848-9931
DOI:10.17535/crorr.2018.0015