Selective laser sintering additive manufacturing of dosage forms: Effect of powder formulation and process parameters on the physical properties of printed tablets
[Display omitted] Large batches of placebo and drug-loaded solid dosage forms were successfully fabricated using selective laser sintering (SLS) 3D printing in this study. The tablet batches were prepared using either copovidone (N-vinyl-2-pyrrolidone and vinyl acetate, PVP/VA) or polyvinyl alcohol...
Gespeichert in:
| Veröffentlicht in: | International journal of pharmaceutics Jg. 635; S. 122780 |
|---|---|
| Hauptverfasser: | , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Netherlands
Elsevier B.V
25.03.2023
|
| Schlagworte: | |
| ISSN: | 0378-5173, 1873-3476, 1873-3476 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | [Display omitted]
Large batches of placebo and drug-loaded solid dosage forms were successfully fabricated using selective laser sintering (SLS) 3D printing in this study. The tablet batches were prepared using either copovidone (N-vinyl-2-pyrrolidone and vinyl acetate, PVP/VA) or polyvinyl alcohol (PVA) and activated carbon (AC) as radiation absorbent, which was added to improve the sintering of the polymer. The physical properties of the dosage forms were evaluated at different pigment concentrations (i.e., 0.5 and 1.0 wt%) and at different laser energy inputs. The mass, hardness, and friability of the tablets were found to be tunable and structures with greater mass and mechanical strength were obtained with increasing carbon concentration and energy input. Amorphization of the active pharmaceutical ingredient in the drug-loaded batches, containing 10 wt% naproxen and 1 wt% AC, was achieved in-situ during printing. Thus, amorphous solid dispersions were prepared in a single-step process and produced tablets with mass losses below 1 wt%. These findings show how the properties of dosage forms can be tuned by careful selection of the process parameters and the powder formulation. SLS 3D printing can therefore be considered to be an interesting and promising technique for the fabrication of personalized medicines. |
|---|---|
| AbstractList | Large batches of placebo and drug-loaded solid dosage forms were successfully fabricated using selective laser sintering (SLS) 3D printing in this study. The tablet batches were prepared using either copovidone (N-vinyl-2-pyrrolidone and vinyl acetate, PVP/VA) or polyvinyl alcohol (PVA) and activated carbon (AC) as radiation absorbent, which was added to improve the sintering of the polymer. The physical properties of the dosage forms were evaluated at different pigment concentrations (i.e., 0.5 and 1.0 wt%) and at different laser energy inputs. The mass, hardness, and friability of the tablets were found to be tunable and structures with greater mass and mechanical strength were obtained with increasing carbon concentration and energy input. Amorphization of the active pharmaceutical ingredient in the drug-loaded batches, containing 10 wt% naproxen and 1 wt% AC, was achieved in-situ during printing. Thus, amorphous solid dispersions were prepared in a single-step process and produced tablets with mass losses below 1 wt%. These findings show how the properties of dosage forms can be tuned by careful selection of the process parameters and the powder formulation. SLS 3D printing can therefore be considered to be an interesting and promising technique for the fabrication of personalized medicines. [Display omitted] Large batches of placebo and drug-loaded solid dosage forms were successfully fabricated using selective laser sintering (SLS) 3D printing in this study. The tablet batches were prepared using either copovidone (N-vinyl-2-pyrrolidone and vinyl acetate, PVP/VA) or polyvinyl alcohol (PVA) and activated carbon (AC) as radiation absorbent, which was added to improve the sintering of the polymer. The physical properties of the dosage forms were evaluated at different pigment concentrations (i.e., 0.5 and 1.0 wt%) and at different laser energy inputs. The mass, hardness, and friability of the tablets were found to be tunable and structures with greater mass and mechanical strength were obtained with increasing carbon concentration and energy input. Amorphization of the active pharmaceutical ingredient in the drug-loaded batches, containing 10 wt% naproxen and 1 wt% AC, was achieved in-situ during printing. Thus, amorphous solid dispersions were prepared in a single-step process and produced tablets with mass losses below 1 wt%. These findings show how the properties of dosage forms can be tuned by careful selection of the process parameters and the powder formulation. SLS 3D printing can therefore be considered to be an interesting and promising technique for the fabrication of personalized medicines. Large batches of placebo and drug-loaded solid dosage forms were successfully fabricated using selective laser sintering (SLS) 3D printing in this study. The tablet batches were prepared using either copovidone (N-vinyl-2-pyrrolidone and vinyl acetate, PVP/VA) or polyvinyl alcohol (PVA) and activated carbon (AC) as radiation absorbent, which was added to improve the sintering of the polymer. The physical properties of the dosage forms were evaluated at different pigment concentrations (i.e., 0.5 and 1.0 wt%) and at different laser energy inputs. The mass, hardness, and friability of the tablets were found to be tunable and structures with greater mass and mechanical strength were obtained with increasing carbon concentration and energy input. Amorphization of the active pharmaceutical ingredient in the drug-loaded batches, containing 10 wt% naproxen and 1 wt% AC, was achieved in-situ during printing. Thus, amorphous solid dispersions were prepared in a single-step process and produced tablets with mass losses below 1 wt%. These findings show how the properties of dosage forms can be tuned by careful selection of the process parameters and the powder formulation. SLS 3D printing can therefore be considered to be an interesting and promising technique for the fabrication of personalized medicines.Large batches of placebo and drug-loaded solid dosage forms were successfully fabricated using selective laser sintering (SLS) 3D printing in this study. The tablet batches were prepared using either copovidone (N-vinyl-2-pyrrolidone and vinyl acetate, PVP/VA) or polyvinyl alcohol (PVA) and activated carbon (AC) as radiation absorbent, which was added to improve the sintering of the polymer. The physical properties of the dosage forms were evaluated at different pigment concentrations (i.e., 0.5 and 1.0 wt%) and at different laser energy inputs. The mass, hardness, and friability of the tablets were found to be tunable and structures with greater mass and mechanical strength were obtained with increasing carbon concentration and energy input. Amorphization of the active pharmaceutical ingredient in the drug-loaded batches, containing 10 wt% naproxen and 1 wt% AC, was achieved in-situ during printing. Thus, amorphous solid dispersions were prepared in a single-step process and produced tablets with mass losses below 1 wt%. These findings show how the properties of dosage forms can be tuned by careful selection of the process parameters and the powder formulation. SLS 3D printing can therefore be considered to be an interesting and promising technique for the fabrication of personalized medicines. |
| ArticleNumber | 122780 |
| Author | Lindh, Jonas Strømme, Maria Kipping, Thomas Di Gallo, Nicole Tikhomirov, Evgenii Åhlén, Michelle Quodbach, Julian |
| Author_xml | – sequence: 1 givenname: Evgenii orcidid: 0000-0003-0072-4458 surname: Tikhomirov fullname: Tikhomirov, Evgenii organization: Division of Nanotechnology and Functional Materials, Department of Materials Science and Engineering, Ångström Laboratory, Uppsala University, Uppsala SE-751 03, Box 35, Sweden – sequence: 2 givenname: Michelle surname: Åhlén fullname: Åhlén, Michelle organization: Division of Nanotechnology and Functional Materials, Department of Materials Science and Engineering, Ångström Laboratory, Uppsala University, Uppsala SE-751 03, Box 35, Sweden – sequence: 3 givenname: Nicole surname: Di Gallo fullname: Di Gallo, Nicole organization: Merck KGaA, Frankfurter Str. 250, Postcode: D033/001, Darmstadt DE-642 93, Germany – sequence: 4 givenname: Maria surname: Strømme fullname: Strømme, Maria organization: Division of Nanotechnology and Functional Materials, Department of Materials Science and Engineering, Ångström Laboratory, Uppsala University, Uppsala SE-751 03, Box 35, Sweden – sequence: 5 givenname: Thomas surname: Kipping fullname: Kipping, Thomas organization: Merck KGaA, Frankfurter Str. 250, Postcode: D033/001, Darmstadt DE-642 93, Germany – sequence: 6 givenname: Julian surname: Quodbach fullname: Quodbach, Julian email: j.h.j.quodbach@uu.nl organization: Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, the Netherlands – sequence: 7 givenname: Jonas orcidid: 0000-0001-5196-4115 surname: Lindh fullname: Lindh, Jonas email: Jonas.Lindh@angstrom.uu.se organization: Division of Nanotechnology and Functional Materials, Department of Materials Science and Engineering, Ångström Laboratory, Uppsala University, Uppsala SE-751 03, Box 35, Sweden |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36849041$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-499246$$DView record from Swedish Publication Index (Uppsala universitet) |
| BookMark | eNqFkctu1DAUhiNURC_wCCAvWTCDHcdOAgtUlXKRKrHgsrVO7OMZj5I42E6rPg8vijMzdMGmK0vH3__p6PznxcnoRyyKl4yuGWXy7W7tdtMWwrAuacnXrCzrhj4pzlhT8xWvanlSnFFeNyvBan5anMe4o5TKkvFnxSmXTdXSip0Vf75jjzq5WyQ9RAwkujFhcOOGgDFu_zHAOFvQad6PvSXGR9ggsT4M8R25tjYblvnk70xWLPO5h-T8SGA0ZApeY4xkggADZnsk-SdtkUzb--g09AsyYUgO494TliUMSdD1mOLz4qmFPuKL43tR_Px0_ePqy-rm2-evV5c3K11VbVpJqQVI0dUSRSeg49aAZKWpmgprSrFmLe8aBlTwUmhstbCVNNR0YBvLAPhF8ebgjXc4zZ3KawwQ7pUHpz66X5fKh42aZ1W1bVnJjL8-4Hn53zPGpAYXNfY9jOjnqJZCaim4qDL66ojO3YDmwfyvhwyIA6CDjzGgfUAYVUvfaqeOfaulb3XoO-fe_5fTLu0vnwK4_tH0h0Ma81VvHQYVtcNRo3EhV6qMd48Y_gLnL86E |
| CitedBy_id | crossref_primary_10_1016_j_ijpx_2025_100383 crossref_primary_10_1016_j_jddst_2025_107166 crossref_primary_10_1080_10426914_2024_2394995 crossref_primary_10_1016_j_jconrel_2023_11_022 crossref_primary_10_1080_09205063_2025_2505350 crossref_primary_10_1177_07316844241273038 crossref_primary_10_1016_j_jpba_2023_115396 crossref_primary_10_1016_j_pmatsci_2024_101282 crossref_primary_10_3389_fddev_2024_1358336 crossref_primary_10_1016_j_ijpharm_2024_125116 crossref_primary_10_1155_adv_1937029 crossref_primary_10_1111_1750_3841_70125 crossref_primary_10_1002_adem_202300122 crossref_primary_10_1016_j_foodchem_2024_140348 crossref_primary_10_1016_j_jconrel_2024_07_035 crossref_primary_10_1016_j_ijpharm_2024_124161 crossref_primary_10_1016_j_jddst_2023_104699 crossref_primary_10_1016_j_jmbbm_2024_106393 crossref_primary_10_1007_s13346_023_01414_8 crossref_primary_10_1039_D5PM00070J crossref_primary_10_1080_09205063_2025_2458841 crossref_primary_10_1134_S0040579523050342 crossref_primary_10_1016_j_ijmecsci_2024_109328 crossref_primary_10_1016_j_polymer_2024_127823 crossref_primary_10_3390_s24092668 crossref_primary_10_1108_RPJ_09_2023_0326 crossref_primary_10_3390_pharmaceutics17060794 crossref_primary_10_1016_j_ijpharm_2025_125415 crossref_primary_10_1208_s12249_025_03141_4 crossref_primary_10_1016_j_addr_2024_115504 crossref_primary_10_1016_j_ijpx_2023_100203 crossref_primary_10_1016_j_pmatsci_2024_101336 crossref_primary_10_1021_acs_molpharmaceut_5c00413 crossref_primary_10_1016_j_ijpharm_2024_124299 crossref_primary_10_1080_17425247_2024_2379943 |
| Cites_doi | 10.1080/03639045.2020.1764027 10.3390/pharmaceutics13101676 10.1038/161929a0 10.3390/pharmaceutics13020160 10.1208/s12249-020-01775-0 10.3390/pharmaceutics11120645 10.1108/13552541111138397 10.3390/pharmaceutics13081212 10.1016/j.jpba.2019.112937 10.3390/pharmaceutics13081149 10.1111/apa.14718 10.1016/j.ejpb.2020.09.012 10.1016/j.ijpharm.2018.02.015 10.1208/s12249-018-1075-3 10.1016/j.jconrel.2020.10.056 10.3139/217.2452 10.1016/j.addr.2021.05.003 10.1021/acs.molpharmaceut.2c00163 10.1021/acs.molpharmaceut.1c00557 10.1016/j.ijpharm.2018.04.055 10.1016/j.tips.2018.02.006 10.3390/pharmaceutics14030589 10.1016/j.jddst.2019.05.037 10.1016/j.ijpharm.2020.119594 10.1016/j.xphs.2020.11.012 10.1016/j.addr.2021.113943 10.3390/pharmaceutics13111969 10.3390/pharmaceutics12020110 10.1016/j.ijpharm.2018.05.044 10.1016/j.addr.2021.04.025 10.1016/j.ijpharm.2016.03.016 10.1016/j.xphs.2020.06.027 10.1007/s11095-019-2655-y 10.1016/j.ijpharm.2020.119066 10.1021/acs.molpharmaceut.9b00703 10.1016/j.ijpharm.2007.11.048 10.1016/j.progpolymsci.2019.03.003 10.1016/j.ijpharm.2020.120059 10.1016/j.ijpharm.2017.06.082 10.3390/ma15062142 |
| ContentType | Journal Article |
| Copyright | 2023 The Authors Copyright © 2023 The Authors. Published by Elsevier B.V. All rights reserved. |
| Copyright_xml | – notice: 2023 The Authors – notice: Copyright © 2023 The Authors. Published by Elsevier B.V. All rights reserved. |
| DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 ACNBI ADTPV AOWAS D8T DF2 ZZAVC |
| DOI | 10.1016/j.ijpharm.2023.122780 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic SWEPUB Uppsala universitet full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Uppsala universitet SwePub Articles full text |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Pharmacy, Therapeutics, & Pharmacology |
| EISSN | 1873-3476 |
| ExternalDocumentID | oai_DiVA_org_uu_499246 36849041 10_1016_j_ijpharm_2023_122780 S0378517323002004 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 6I. 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAFTH AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO ABFNM ABFRF ABJNI ABMAC ABOCM ABZDS ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE AEBSH AEFWE AEIPS AEKER AENEX AFJKZ AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AKRWK ALCLG ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC C45 CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M34 M41 MO0 N9A O-L O9- OAUVE OGGZJ OVD OZT P-8 P-9 P2P PC. Q38 ROL RPZ SCC SDF SDG SDP SES SPCBC SSP SSZ T5K TEORI ~02 ~G- .GJ 29J 3O- 53G 5VS 9DU AAQXK AATTM AAYWO AAYXX ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HMT HVGLF HZ~ R2- SEW SPT WUQ ZXP ~HD CGR CUY CVF ECM EIF NPM 7X8 ACNBI ADTPV AOWAS D8T DF2 ZZAVC |
| ID | FETCH-LOGICAL-c449t-66c5a65b76e5b5ab3fda612d484e700e7193b81a05325ce9c5f46d0dbaf8f1aa3 |
| ISICitedReferencesCount | 39 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000956438700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0378-5173 1873-3476 |
| IngestDate | Tue Nov 04 16:57:56 EST 2025 Sun Nov 09 10:07:42 EST 2025 Wed Feb 19 02:25:03 EST 2025 Tue Nov 18 22:36:06 EST 2025 Sat Nov 29 02:36:35 EST 2025 Sat Jan 18 16:09:04 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Drug manufacturing Three-dimensional printing Personalized medicines Selective laser sintering Additive manufacturing |
| Language | English |
| License | This is an open access article under the CC BY license. Copyright © 2023 The Authors. Published by Elsevier B.V. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c449t-66c5a65b76e5b5ab3fda612d484e700e7193b81a05325ce9c5f46d0dbaf8f1aa3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-0072-4458 0000-0001-5196-4115 |
| OpenAccessLink | https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-499246 |
| PMID | 36849041 |
| PQID | 2780765354 |
| PQPubID | 23479 |
| ParticipantIDs | swepub_primary_oai_DiVA_org_uu_499246 proquest_miscellaneous_2780765354 pubmed_primary_36849041 crossref_primary_10_1016_j_ijpharm_2023_122780 crossref_citationtrail_10_1016_j_ijpharm_2023_122780 elsevier_sciencedirect_doi_10_1016_j_ijpharm_2023_122780 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-03-25 |
| PublicationDateYYYYMMDD | 2023-03-25 |
| PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-25 day: 25 |
| PublicationDecade | 2020 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | International journal of pharmaceutics |
| PublicationTitleAlternate | Int J Pharm |
| PublicationYear | 2023 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Healy, Fuenmayor, Doran, Geever, Higginbotham, Lyons (b0105) 2019; 11 van der Vossen, Al-Hassany, Buljac, Brugma, Vulto, Hanff (b0225) 2019; 108 Kader, Liminga, Ljungman, Paulsson (b0110) 2021; 13 Charoo, Barakh Ali, Mohamed, Kuttolamadom, Ozkan, Khan, Rahman (b0040) 2020; 46 Kulinowski, Malczewski, Łaszcz, Baran, Milanowski, Kuprianowicz, Dorożyński (b0130) 2022; 15 Awad, Fina, Goyanes, Gaisford, Basit (b0010) 2020; 586 Qi, Gryczke, Belton, Craig (b0165) 2008; 354 ed., 2.9.7. Friability of Uncoated Tablets, Strasbourg, 2020, pp. 336-337. Schmid (b0180) 2018 Yan, Shi, Hao (b0235) 2011; 26 Mohamed, Barakh Ali, Rahman, Dharani, Ozkan, Kuttolamadom, Khan (b0155) 2020; 21 European Pharmacopoeia 10 Matijašić, Gretić, Vinčić, Poropat, Cuculić, Rahelić (b0150) 2019; 52 Thakkar, Jara, Swinnea, Pillai, Maniruzzaman (b0200) 2021; 13 Sen, Mehta, Sansare, Sharifi, Ma, Chaudhuri (b0185) 2021; 177 Bordos, Islam, Florence, Halbert, Robertson (b0020) 2019; 16 Chatham, Long, Williams (b0045) 2019; 93 Fina, Goyanes, Gaisford, Basit (b0070) 2017; 529 Chang, Li, Kowsari, Shetty, Sorrells, Sen, Nagapudi, Chaudhuri, Ma (b0035) 2020; 109 Trenfield, Tan, Goyanes, Wilsdon, Rowland, Gaisford, Basit (b0215) 2020; 577 Bunn (b0025) 1948; 161 Awad, Fina, Goyanes, Gaisford, Basit (b0015) 2021; 174 The United States Pharmacopeia and National Formulary USP 37–NF 32, Dissolution, The United States Pharmacopeial Convention, Inc., Rockville, MD, 2014. Trenfield, Awad, Goyanes, Gaisford, Basit (b0210) 2018; 39 Dedroog, Pas, Vergauwen, Huygens, Van den Mooter (b0060) 2020; 178 El Aita, Rahman, Breitkreutz, Quodbach (b0065) 2020; 157 Wang, Goyanes, Gaisford, Basit (b0230) 2016; 503 Allahham, Fina, Marcuta, Kraschew, Mohr, Gaisford, Basit, Goyanes (b0005) 2020; 12 Kulinowski, Malczewski, Pesta, Łaszcz, Mendyk, Polak, Dorożyński (b0125) 2021; 38 Cailleaux, Sanchez-Ballester, Gueche, Bataille, Soulairol (b0030) 2021; 330 Fina, Madla, Goyanes, Zhang, Gaisford, Basit (b0075) 2018; 541 Santitewagun, Thakkar, Zeitler, Maniruzzaman (b0170) 2022; 19 Cooke, Tomlinson, Burguete, Johns, Vanard (b0050) 2011; 17 Gueche, Sanchez-Ballester, Cailleaux, Bataille, Soulairol (b0090) 2021; 13 Lekurwale, Karanwad, Banerjee (b0135) 2022; 6 Hamed, Mohamed, Rahman, Khan (b0100) 2021; 592 Martinez, Goyanes, Basit, Gaisford (b0145) 2018; 19 Thakkar, Davis, Williams, Maniruzzaman (b0195) 2021; 18 Gueche, Sanchez-Ballester, Bataille, Aubert, Leclercq, Rossi, Soulairol (b0085) 2021; 13 Schmid (b0175) 2018 Gultekin, Tort, Acarturk (b0095) 2019; 36 Kollamaram, Croker, Walker, Goyanes, Basit, Gaisford (b0115) 2018; 545 Seoane-Viano, Trenfield, Basit, Goyanes (b0190) 2021; 174 Davis, Thakkar, Su, Williams, Maniruzzaman (b0055) 2021; 110 Fina, Goyanes, Madla, Awad, Trenfield, Kuek, Patel, Gaisford, Basit (b0080) 2018; 547 Konta, Garcia-Pina, Serrano (b0120) 2017; 4 Trenfield, Januskaite, Goyanes, Wilsdon, Rowland, Gaisford, Basit (b0220) 2022; 14 Madžarević, Medarević, Pavlović, Ivković, Đuriš, Ibrić (b0140) 2021; 13 El Aita (10.1016/j.ijpharm.2023.122780_b0065) 2020; 157 Dedroog (10.1016/j.ijpharm.2023.122780_b0060) 2020; 178 Qi (10.1016/j.ijpharm.2023.122780_b0165) 2008; 354 Kulinowski (10.1016/j.ijpharm.2023.122780_b0130) 2022; 15 Cailleaux (10.1016/j.ijpharm.2023.122780_b0030) 2021; 330 Trenfield (10.1016/j.ijpharm.2023.122780_b0210) 2018; 39 Awad (10.1016/j.ijpharm.2023.122780_b0015) 2021; 174 Healy (10.1016/j.ijpharm.2023.122780_b0105) 2019; 11 Seoane-Viano (10.1016/j.ijpharm.2023.122780_b0190) 2021; 174 Fina (10.1016/j.ijpharm.2023.122780_b0080) 2018; 547 Chatham (10.1016/j.ijpharm.2023.122780_b0045) 2019; 93 Sen (10.1016/j.ijpharm.2023.122780_b0185) 2021; 177 Gueche (10.1016/j.ijpharm.2023.122780_b0090) 2021; 13 Hamed (10.1016/j.ijpharm.2023.122780_b0100) 2021; 592 Yan (10.1016/j.ijpharm.2023.122780_b0235) 2011; 26 Martinez (10.1016/j.ijpharm.2023.122780_b0145) 2018; 19 Allahham (10.1016/j.ijpharm.2023.122780_b0005) 2020; 12 Lekurwale (10.1016/j.ijpharm.2023.122780_b0135) 2022; 6 Cooke (10.1016/j.ijpharm.2023.122780_b0050) 2011; 17 Mohamed (10.1016/j.ijpharm.2023.122780_b0155) 2020; 21 Matijašić (10.1016/j.ijpharm.2023.122780_b0150) 2019; 52 Trenfield (10.1016/j.ijpharm.2023.122780_b0220) 2022; 14 Chang (10.1016/j.ijpharm.2023.122780_b0035) 2020; 109 Gultekin (10.1016/j.ijpharm.2023.122780_b0095) 2019; 36 Awad (10.1016/j.ijpharm.2023.122780_b0010) 2020; 586 Charoo (10.1016/j.ijpharm.2023.122780_b0040) 2020; 46 Bunn (10.1016/j.ijpharm.2023.122780_b0025) 1948; 161 Fina (10.1016/j.ijpharm.2023.122780_b0070) 2017; 529 Trenfield (10.1016/j.ijpharm.2023.122780_b0215) 2020; 577 Fina (10.1016/j.ijpharm.2023.122780_b0075) 2018; 541 Bordos (10.1016/j.ijpharm.2023.122780_b0020) 2019; 16 Davis (10.1016/j.ijpharm.2023.122780_b0055) 2021; 110 Thakkar (10.1016/j.ijpharm.2023.122780_b0195) 2021; 18 Gueche (10.1016/j.ijpharm.2023.122780_b0085) 2021; 13 Kollamaram (10.1016/j.ijpharm.2023.122780_b0115) 2018; 545 Santitewagun (10.1016/j.ijpharm.2023.122780_b0170) 2022; 19 10.1016/j.ijpharm.2023.122780_b0205 Kulinowski (10.1016/j.ijpharm.2023.122780_b0125) 2021; 38 van der Vossen (10.1016/j.ijpharm.2023.122780_b0225) 2019; 108 Schmid (10.1016/j.ijpharm.2023.122780_b0180) 2018 Wang (10.1016/j.ijpharm.2023.122780_b0230) 2016; 503 Madžarević (10.1016/j.ijpharm.2023.122780_b0140) 2021; 13 10.1016/j.ijpharm.2023.122780_b0160 Kader (10.1016/j.ijpharm.2023.122780_b0110) 2021; 13 Konta (10.1016/j.ijpharm.2023.122780_b0120) 2017; 4 Thakkar (10.1016/j.ijpharm.2023.122780_b0200) 2021; 13 Schmid (10.1016/j.ijpharm.2023.122780_b0175) 2018 |
| References_xml | – volume: 547 start-page: 44 year: 2018 end-page: 52 ident: b0080 article-title: 3D printing of drug-loaded gyroid lattices using selective laser sintering publication-title: Int. J. Pharm. – reference: European Pharmacopoeia 10 – volume: 586 year: 2020 ident: b0010 article-title: 3D printing: Principles and pharmaceutical applications of selective laser sintering publication-title: Int. J. Pharm. – volume: 14 start-page: 589 year: 2022 ident: b0220 article-title: Prediction of solid-state form of SLS 3D printed medicines using NIR and Raman spectroscopy publication-title: Pharmaceutics – volume: 545 start-page: 144 year: 2018 end-page: 152 ident: b0115 article-title: Low temperature fused deposition modeling (FDM) 3D printing of thermolabile drugs publication-title: Int. J. Pharm. – volume: 6 start-page: pp year: 2022 ident: b0135 publication-title: Ann. 3D Print Med. – reference: ed., 2.9.7. Friability of Uncoated Tablets, Strasbourg, 2020, pp. 336-337. – volume: 4 start-page: pp year: 2017 ident: b0120 article-title: Personalised 3D printed medicines: Which techniques and polymers are more successful? publication-title: Bioeng. – volume: 13 start-page: 1969 year: 2021 ident: b0140 article-title: Understanding the effect of energy density and formulation factors on the printability and characteristics of SLS irbesartan tablets-application of the decision tree model publication-title: Pharmaceutics – volume: 39 start-page: 440 year: 2018 end-page: 451 ident: b0210 article-title: 3D printing pharmaceuticals: Drug development to frontline care publication-title: Trends Pharmacol. Sci. – volume: 108 start-page: 1475 year: 2019 end-page: 1481 ident: b0225 article-title: Manipulation of oral medication for children by parents and nurses occurs frequently and is often not supported by instructions publication-title: Acta Paediatr – volume: 38 start-page: pp year: 2021 ident: b0125 article-title: Selective laser sintering (SLS) technique for pharmaceutical applications—Development of high dose controlled release printlets publication-title: Addit. Manuf. – volume: 52 start-page: 677 year: 2019 end-page: 686 ident: b0150 article-title: Design and 3D printing of multi-compartmental PVA capsules for drug delivery publication-title: J. Drug Delivery Sci. Technol. – volume: 19 start-page: 2380 year: 2022 end-page: 2389 ident: b0170 article-title: Detecting crystallinity using terahertz spectroscopy in 3D printed amorphous solid dispersions publication-title: Mol. Pharm. – volume: 15 start-page: 2142 year: 2022 ident: b0130 article-title: Development of composite, reinforced, highly drug-loaded pharmaceutical printlets manufactured by selective laser sintering-in search of relevant excipients for pharmaceutical 3D printing publication-title: Materials – volume: 503 start-page: 207 year: 2016 end-page: 212 ident: b0230 article-title: Stereolithographic (SLA) 3D printing of oral modified-release dosage forms publication-title: Int. J. Pharm. – volume: 46 start-page: 869 year: 2020 end-page: 877 ident: b0040 article-title: Selective laser sintering 3D printing - an overview of the technology and pharmaceutical applications publication-title: Drug Dev. Ind. Pharm. – volume: 110 start-page: 1432 year: 2021 end-page: 1443 ident: b0055 article-title: Selective laser sintering 3-dimensional printing as a single step process to prepare amorphous solid dispersion dosage forms for improved solubility and dissolution rate publication-title: J. Pharm. Sci. – volume: 93 start-page: 68 year: 2019 end-page: 95 ident: b0045 article-title: A review of the process physics and material screening methods for polymer powder bed fusion additive manufacturing publication-title: Prog. Polym. Sci. – volume: 177 year: 2021 ident: b0185 article-title: Pharmaceutical applications of powder-based binder jet 3D printing process - A review publication-title: Adv. Drug Deliv. Rev. – volume: 178 year: 2020 ident: b0060 article-title: Solid-state analysis of amorphous solid dispersions: Why DSC and XRPD may not be regarded as stand-alone techniques publication-title: J. Pharm. Biomed. Anal. – year: 2018 ident: b0175 article-title: Laser sintering with plastics: Technology, processes, and materials – volume: 354 start-page: 158 year: 2008 end-page: 167 ident: b0165 article-title: Characterisation of solid dispersions of paracetamol and EUDRAGIT® prepared by hot-melt extrusion using thermal, microthermal and spectroscopic analysis publication-title: Int. J. Pharm. – volume: 19 start-page: 3355 year: 2018 end-page: 3361 ident: b0145 article-title: Influence of geometry on the drug release profiles of stereolithographic (SLA) 3D-printed tablets publication-title: AAPS PharmSciTech – volume: 109 start-page: 3054 year: 2020 end-page: 3063 ident: b0035 article-title: Binder-jet 3D printing of indomethacin-laden pharmaceutical dosage forms publication-title: J. Pharm. Sci. – volume: 18 start-page: 3894 year: 2021 end-page: 3908 ident: b0195 article-title: Selective laser sintering of a photosensitive drug: Impact of processing and formulation parameters on degradation, solid state, and quality of 3D-printed dosage forms publication-title: Mol. Pharm. – volume: 592 year: 2021 ident: b0100 article-title: 3D-printing of lopinavir printlets by selective laser sintering and quantification of crystalline fraction by XRPD-chemometric models publication-title: Int. J. Pharm. – volume: 174 start-page: 553 year: 2021 end-page: 575 ident: b0190 article-title: Translating 3D printed pharmaceuticals: From hype to real-world clinical applications publication-title: Adv. Drug Deliv. Rev. – volume: 16 start-page: 4361 year: 2019 end-page: 4371 ident: b0020 article-title: Use of terahertz-raman spectroscopy to determine solubility of the crystalline active pharmaceutical ingredient in polymeric matrices during hot melt extrusion publication-title: Mol. Pharmaceutics – volume: 13 start-page: pp year: 2021 ident: b0090 article-title: Selective laser sintering (SLS), a new chapter in the production of solid oral forms (SOFs) by 3D printing publication-title: Pharmaceutics – volume: 157 start-page: 59 year: 2020 end-page: 65 ident: b0065 article-title: 3D-Printing with precise layer-wise dose adjustments for paediatric use via pressure-assisted microsyringe printing publication-title: Eur. J. Pharm. Biopharm. – volume: 577 year: 2020 ident: b0215 article-title: Non-destructive dose verification of two drugs within 3D printed polyprintlets publication-title: Int. J. Pharm. – volume: 529 start-page: 285 year: 2017 end-page: 293 ident: b0070 article-title: Selective laser sintering (SLS) 3D printing of medicines publication-title: Int. J. Pharm. – volume: 541 start-page: 101 year: 2018 end-page: 107 ident: b0075 article-title: Fabricating 3D printed orally disintegrating printlets using selective laser sintering publication-title: Int. J. Pharm. – volume: 13 start-page: pp year: 2021 ident: b0200 article-title: Impact of laser speed and drug particle size on selective laser sintering 3D printing of amorphous solid dispersions publication-title: Pharmaceutics – volume: 26 start-page: 416 year: 2011 end-page: 423 ident: b0235 article-title: Investigation into the differences in the selective laser sintering between amorphous and semi-crystalline polymers publication-title: Int. Polym. Process. – volume: 11 start-page: pp year: 2019 ident: b0105 article-title: Additive manufacturing of personalized pharmaceutical dosage forms via stereolithography publication-title: Pharmaceutics – reference: The United States Pharmacopeia and National Formulary USP 37–NF 32, <711> Dissolution, The United States Pharmacopeial Convention, Inc., Rockville, MD, 2014. – volume: 174 start-page: 406 year: 2021 end-page: 424 ident: b0015 article-title: Advances in powder bed fusion 3D printing in drug delivery and healthcare publication-title: Adv. Drug Deliv. Rev. – volume: 161 start-page: 929 year: 1948 end-page: 930 ident: b0025 article-title: Crystal structure of polyvinyl alcohol publication-title: Nature – volume: 330 start-page: 821 year: 2021 end-page: 841 ident: b0030 article-title: Fused deposition modeling (FDM), the new asset for the production of tailored medicines publication-title: J. Control Release – volume: 17 start-page: 269 year: 2011 end-page: 279 ident: b0050 article-title: Anisotropy, homogeneity and ageing in an SLS polymer publication-title: Rapid Prototyp. J. – volume: 21 start-page: 232 year: 2020 ident: b0155 article-title: Formulation optimization of selective laser sintering 3D-printed tablets of clindamycin palmitate hydrochloride by response surface methodology publication-title: AAPS PharmSciTech – volume: 13 start-page: 160 year: 2021 ident: b0085 article-title: Selective laser sintering of solid oral dosage forms with copovidone and paracetamol using a CO publication-title: Pharmaceutics – volume: 13 start-page: 1676 year: 2021 ident: b0110 article-title: Manipulations of oral medications in paediatric neurology and oncology care at a Swedish university hospital: Health professionals' attitudes and sources of information publication-title: Pharmaceutics – volume: 36 start-page: 128 year: 2019 ident: b0095 article-title: An effective technology for the development of immediate release solid dosage forms containing low-dose drug: Fused deposition modeling 3D printing publication-title: Pharm. Res. – start-page: 65 year: 2018 end-page: 99 ident: b0180 article-title: LS materials: Polymer properties publication-title: Laser sintering with plastics: Technology, processes, and materials – volume: 12 start-page: 110 year: 2020 ident: b0005 article-title: Selective laser sintering 3D printing of orally disintegrating printlets containing ondansetron publication-title: Pharmaceutics – volume: 46 start-page: 869 year: 2020 ident: 10.1016/j.ijpharm.2023.122780_b0040 article-title: Selective laser sintering 3D printing - an overview of the technology and pharmaceutical applications publication-title: Drug Dev. Ind. Pharm. doi: 10.1080/03639045.2020.1764027 – volume: 13 start-page: 1676 year: 2021 ident: 10.1016/j.ijpharm.2023.122780_b0110 article-title: Manipulations of oral medications in paediatric neurology and oncology care at a Swedish university hospital: Health professionals' attitudes and sources of information publication-title: Pharmaceutics doi: 10.3390/pharmaceutics13101676 – volume: 161 start-page: 929 year: 1948 ident: 10.1016/j.ijpharm.2023.122780_b0025 article-title: Crystal structure of polyvinyl alcohol publication-title: Nature doi: 10.1038/161929a0 – volume: 13 start-page: 160 year: 2021 ident: 10.1016/j.ijpharm.2023.122780_b0085 article-title: Selective laser sintering of solid oral dosage forms with copovidone and paracetamol using a CO2 laser publication-title: Pharmaceutics doi: 10.3390/pharmaceutics13020160 – ident: 10.1016/j.ijpharm.2023.122780_b0160 – volume: 21 start-page: 232 year: 2020 ident: 10.1016/j.ijpharm.2023.122780_b0155 article-title: Formulation optimization of selective laser sintering 3D-printed tablets of clindamycin palmitate hydrochloride by response surface methodology publication-title: AAPS PharmSciTech doi: 10.1208/s12249-020-01775-0 – volume: 4 start-page: pp year: 2017 ident: 10.1016/j.ijpharm.2023.122780_b0120 article-title: Personalised 3D printed medicines: Which techniques and polymers are more successful? publication-title: Bioeng. – volume: 11 start-page: pp year: 2019 ident: 10.1016/j.ijpharm.2023.122780_b0105 article-title: Additive manufacturing of personalized pharmaceutical dosage forms via stereolithography publication-title: Pharmaceutics doi: 10.3390/pharmaceutics11120645 – volume: 17 start-page: 269 year: 2011 ident: 10.1016/j.ijpharm.2023.122780_b0050 article-title: Anisotropy, homogeneity and ageing in an SLS polymer publication-title: Rapid Prototyp. J. doi: 10.1108/13552541111138397 – volume: 13 start-page: pp year: 2021 ident: 10.1016/j.ijpharm.2023.122780_b0090 article-title: Selective laser sintering (SLS), a new chapter in the production of solid oral forms (SOFs) by 3D printing publication-title: Pharmaceutics doi: 10.3390/pharmaceutics13081212 – volume: 178 year: 2020 ident: 10.1016/j.ijpharm.2023.122780_b0060 article-title: Solid-state analysis of amorphous solid dispersions: Why DSC and XRPD may not be regarded as stand-alone techniques publication-title: J. Pharm. Biomed. Anal. doi: 10.1016/j.jpba.2019.112937 – volume: 6 start-page: pp year: 2022 ident: 10.1016/j.ijpharm.2023.122780_b0135 article-title: Selective laser sintering (SLS) of 3D printlets using a 3D printer comprised of IR/red-diode laser publication-title: Ann. 3D Print Med. – volume: 13 start-page: pp year: 2021 ident: 10.1016/j.ijpharm.2023.122780_b0200 article-title: Impact of laser speed and drug particle size on selective laser sintering 3D printing of amorphous solid dispersions publication-title: Pharmaceutics doi: 10.3390/pharmaceutics13081149 – volume: 108 start-page: 1475 year: 2019 ident: 10.1016/j.ijpharm.2023.122780_b0225 article-title: Manipulation of oral medication for children by parents and nurses occurs frequently and is often not supported by instructions publication-title: Acta Paediatr doi: 10.1111/apa.14718 – volume: 157 start-page: 59 year: 2020 ident: 10.1016/j.ijpharm.2023.122780_b0065 article-title: 3D-Printing with precise layer-wise dose adjustments for paediatric use via pressure-assisted microsyringe printing publication-title: Eur. J. Pharm. Biopharm. doi: 10.1016/j.ejpb.2020.09.012 – volume: 541 start-page: 101 year: 2018 ident: 10.1016/j.ijpharm.2023.122780_b0075 article-title: Fabricating 3D printed orally disintegrating printlets using selective laser sintering publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2018.02.015 – volume: 19 start-page: 3355 year: 2018 ident: 10.1016/j.ijpharm.2023.122780_b0145 article-title: Influence of geometry on the drug release profiles of stereolithographic (SLA) 3D-printed tablets publication-title: AAPS PharmSciTech doi: 10.1208/s12249-018-1075-3 – volume: 330 start-page: 821 year: 2021 ident: 10.1016/j.ijpharm.2023.122780_b0030 article-title: Fused deposition modeling (FDM), the new asset for the production of tailored medicines publication-title: J. Control Release doi: 10.1016/j.jconrel.2020.10.056 – volume: 26 start-page: 416 year: 2011 ident: 10.1016/j.ijpharm.2023.122780_b0235 article-title: Investigation into the differences in the selective laser sintering between amorphous and semi-crystalline polymers publication-title: Int. Polym. Process. doi: 10.3139/217.2452 – volume: 174 start-page: 553 year: 2021 ident: 10.1016/j.ijpharm.2023.122780_b0190 article-title: Translating 3D printed pharmaceuticals: From hype to real-world clinical applications publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2021.05.003 – volume: 19 start-page: 2380 year: 2022 ident: 10.1016/j.ijpharm.2023.122780_b0170 article-title: Detecting crystallinity using terahertz spectroscopy in 3D printed amorphous solid dispersions publication-title: Mol. Pharm. doi: 10.1021/acs.molpharmaceut.2c00163 – year: 2018 ident: 10.1016/j.ijpharm.2023.122780_b0175 – volume: 18 start-page: 3894 year: 2021 ident: 10.1016/j.ijpharm.2023.122780_b0195 article-title: Selective laser sintering of a photosensitive drug: Impact of processing and formulation parameters on degradation, solid state, and quality of 3D-printed dosage forms publication-title: Mol. Pharm. doi: 10.1021/acs.molpharmaceut.1c00557 – volume: 545 start-page: 144 year: 2018 ident: 10.1016/j.ijpharm.2023.122780_b0115 article-title: Low temperature fused deposition modeling (FDM) 3D printing of thermolabile drugs publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2018.04.055 – volume: 39 start-page: 440 year: 2018 ident: 10.1016/j.ijpharm.2023.122780_b0210 article-title: 3D printing pharmaceuticals: Drug development to frontline care publication-title: Trends Pharmacol. Sci. doi: 10.1016/j.tips.2018.02.006 – volume: 14 start-page: 589 year: 2022 ident: 10.1016/j.ijpharm.2023.122780_b0220 article-title: Prediction of solid-state form of SLS 3D printed medicines using NIR and Raman spectroscopy publication-title: Pharmaceutics doi: 10.3390/pharmaceutics14030589 – volume: 52 start-page: 677 year: 2019 ident: 10.1016/j.ijpharm.2023.122780_b0150 article-title: Design and 3D printing of multi-compartmental PVA capsules for drug delivery publication-title: J. Drug Delivery Sci. Technol. doi: 10.1016/j.jddst.2019.05.037 – volume: 586 year: 2020 ident: 10.1016/j.ijpharm.2023.122780_b0010 article-title: 3D printing: Principles and pharmaceutical applications of selective laser sintering publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2020.119594 – volume: 110 start-page: 1432 year: 2021 ident: 10.1016/j.ijpharm.2023.122780_b0055 article-title: Selective laser sintering 3-dimensional printing as a single step process to prepare amorphous solid dispersion dosage forms for improved solubility and dissolution rate publication-title: J. Pharm. Sci. doi: 10.1016/j.xphs.2020.11.012 – volume: 177 year: 2021 ident: 10.1016/j.ijpharm.2023.122780_b0185 article-title: Pharmaceutical applications of powder-based binder jet 3D printing process - A review publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2021.113943 – volume: 13 start-page: 1969 year: 2021 ident: 10.1016/j.ijpharm.2023.122780_b0140 article-title: Understanding the effect of energy density and formulation factors on the printability and characteristics of SLS irbesartan tablets-application of the decision tree model publication-title: Pharmaceutics doi: 10.3390/pharmaceutics13111969 – volume: 12 start-page: 110 year: 2020 ident: 10.1016/j.ijpharm.2023.122780_b0005 article-title: Selective laser sintering 3D printing of orally disintegrating printlets containing ondansetron publication-title: Pharmaceutics doi: 10.3390/pharmaceutics12020110 – volume: 547 start-page: 44 year: 2018 ident: 10.1016/j.ijpharm.2023.122780_b0080 article-title: 3D printing of drug-loaded gyroid lattices using selective laser sintering publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2018.05.044 – volume: 174 start-page: 406 year: 2021 ident: 10.1016/j.ijpharm.2023.122780_b0015 article-title: Advances in powder bed fusion 3D printing in drug delivery and healthcare publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2021.04.025 – volume: 503 start-page: 207 year: 2016 ident: 10.1016/j.ijpharm.2023.122780_b0230 article-title: Stereolithographic (SLA) 3D printing of oral modified-release dosage forms publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2016.03.016 – volume: 109 start-page: 3054 year: 2020 ident: 10.1016/j.ijpharm.2023.122780_b0035 article-title: Binder-jet 3D printing of indomethacin-laden pharmaceutical dosage forms publication-title: J. Pharm. Sci. doi: 10.1016/j.xphs.2020.06.027 – start-page: 65 year: 2018 ident: 10.1016/j.ijpharm.2023.122780_b0180 article-title: LS materials: Polymer properties – volume: 36 start-page: 128 year: 2019 ident: 10.1016/j.ijpharm.2023.122780_b0095 article-title: An effective technology for the development of immediate release solid dosage forms containing low-dose drug: Fused deposition modeling 3D printing publication-title: Pharm. Res. doi: 10.1007/s11095-019-2655-y – volume: 577 year: 2020 ident: 10.1016/j.ijpharm.2023.122780_b0215 article-title: Non-destructive dose verification of two drugs within 3D printed polyprintlets publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2020.119066 – volume: 16 start-page: 4361 year: 2019 ident: 10.1016/j.ijpharm.2023.122780_b0020 article-title: Use of terahertz-raman spectroscopy to determine solubility of the crystalline active pharmaceutical ingredient in polymeric matrices during hot melt extrusion publication-title: Mol. Pharmaceutics doi: 10.1021/acs.molpharmaceut.9b00703 – volume: 354 start-page: 158 year: 2008 ident: 10.1016/j.ijpharm.2023.122780_b0165 article-title: Characterisation of solid dispersions of paracetamol and EUDRAGIT® prepared by hot-melt extrusion using thermal, microthermal and spectroscopic analysis publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2007.11.048 – volume: 93 start-page: 68 year: 2019 ident: 10.1016/j.ijpharm.2023.122780_b0045 article-title: A review of the process physics and material screening methods for polymer powder bed fusion additive manufacturing publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2019.03.003 – ident: 10.1016/j.ijpharm.2023.122780_b0205 – volume: 592 year: 2021 ident: 10.1016/j.ijpharm.2023.122780_b0100 article-title: 3D-printing of lopinavir printlets by selective laser sintering and quantification of crystalline fraction by XRPD-chemometric models publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2020.120059 – volume: 529 start-page: 285 year: 2017 ident: 10.1016/j.ijpharm.2023.122780_b0070 article-title: Selective laser sintering (SLS) 3D printing of medicines publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2017.06.082 – volume: 38 start-page: pp year: 2021 ident: 10.1016/j.ijpharm.2023.122780_b0125 article-title: Selective laser sintering (SLS) technique for pharmaceutical applications—Development of high dose controlled release printlets publication-title: Addit. Manuf. – volume: 15 start-page: 2142 year: 2022 ident: 10.1016/j.ijpharm.2023.122780_b0130 article-title: Development of composite, reinforced, highly drug-loaded pharmaceutical printlets manufactured by selective laser sintering-in search of relevant excipients for pharmaceutical 3D printing publication-title: Materials doi: 10.3390/ma15062142 |
| SSID | ssj0006213 |
| Score | 2.562189 |
| Snippet | [Display omitted]
Large batches of placebo and drug-loaded solid dosage forms were successfully fabricated using selective laser sintering (SLS) 3D printing in... Large batches of placebo and drug-loaded solid dosage forms were successfully fabricated using selective laser sintering (SLS) 3D printing in this study. The... |
| SourceID | swepub proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 122780 |
| SubjectTerms | Additive manufacturing Dosage Forms Drug Compounding - methods Drug Liberation Drug manufacturing Engineering Science with specialization in Nanotechnology and Functional Materials Lasers Personalized medicines Polymers - chemistry Powders Printing, Three-Dimensional Selective laser sintering Tablets - chemistry Technology, Pharmaceutical - methods Teknisk fysik med inriktning mot nanoteknologi och funktionella material Three-dimensional printing |
| Title | Selective laser sintering additive manufacturing of dosage forms: Effect of powder formulation and process parameters on the physical properties of printed tablets |
| URI | https://dx.doi.org/10.1016/j.ijpharm.2023.122780 https://www.ncbi.nlm.nih.gov/pubmed/36849041 https://www.proquest.com/docview/2780765354 https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-499246 |
| Volume | 635 |
| WOSCitedRecordID | wos000956438700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-3476 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006213 issn: 1873-3476 databaseCode: AIEXJ dateStart: 19950102 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6DaG9IO6Uy2Qk2MuWLontXHgrMG6CadIK6lvkJA7NWJOqN7bfw0_jj-DjS7KrBg-8RFVcO2nPZ_vYPt93EHrhZ4EvPJY5hHjcoVRQ2aUocULhC5FyuWLJVNaSz-HeXjQcxvudzm_LhVkehVUVHR_Hk_9qanlPGhuos_9g7qZReUN-lkaXV2l2ef0rwx-ozDYQECQdY9BqBkUIzUXMcx0pNObVAhgNmqIo3cW8hvgyxWRUIXJG0xiioeufoDYBJSbRl5EWUPyCLVAOH0NEjT11MFslwO-Cbf4p6LWqdqbwGvnWHKhaWj3K-sRnNyVPSVlMRu1-e-P6D8ofo3pcTuulGsaX8n8oS1sIx_4RGx3p4_-GFwCHE43HXm695-bASXWDpuRgrsIGXkdjnTn-C9ch2M2uiE8gLEwzqHtCj-RRSBxCdXIZO9QHhJ0arD2gAbuXziN6S-OwVx6qn9qDR_Qufl9aZDJWOCJBRGNXa3idE_C2RStozQ9ZLGePtf7H3eGnxmEIfI-05LKdS5-6jm7adq7yoC6ukM7J3yqXaXAb3TJrHdzXGL2DOqK6izb3tVVPtvGg5f7NtvEm3m9l1E_uoV8NkLECMm6AjC2Q8Rkg47rAGshYAfkV1jCG-xrG-BSMsYQxNjDGLYyxLJEwxhbGuIWxakfDGBsY30df3-0O3nxwTEoRJ6M0njtBkDEesDQMBEsZT0mRc-nj5zSiInRdEcr1TBp5HPKlsEzEGStokLt5youo8DgnD9BqVVfiEcKuXNuD0lIaFozSIItokcnlU-YRKnJZoYuoNVOSGb19SPtylNjAysPEGDoBQyfa0F3Ua6pNtODMdRUii4HEeM3aG04kmK-r-txiJpGzChwV8krUi1kCpWHACKNd9FCDqXkbi8MueqnR1ZSAVP3b8ls_qaffk8UioXHs0-DxlS08Qett332KVufThXiGbmTLeTmbbqCVcBhtmM7yB0OgCoY |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Selective+laser+sintering+additive+manufacturing+of+dosage+forms%3A+Effect+of+powder+formulation+and+process+parameters+on+the+physical+properties+of+printed+tablets&rft.jtitle=International+journal+of+pharmaceutics&rft.au=Tikhomirov%2C+Evgenii&rft.au=%C3%85hl%C3%A9n%2C+Michelle&rft.au=Di+Gallo%2C+Nicole&rft.au=Str%C3%B8mme%2C+Maria&rft.date=2023-03-25&rft.eissn=1873-3476&rft.volume=635&rft.spage=122780&rft_id=info:doi/10.1016%2Fj.ijpharm.2023.122780&rft_id=info%3Apmid%2F36849041&rft.externalDocID=36849041 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-5173&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-5173&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-5173&client=summon |