Selective laser sintering additive manufacturing of dosage forms: Effect of powder formulation and process parameters on the physical properties of printed tablets

[Display omitted] Large batches of placebo and drug-loaded solid dosage forms were successfully fabricated using selective laser sintering (SLS) 3D printing in this study. The tablet batches were prepared using either copovidone (N-vinyl-2-pyrrolidone and vinyl acetate, PVP/VA) or polyvinyl alcohol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of pharmaceutics Jg. 635; S. 122780
Hauptverfasser: Tikhomirov, Evgenii, Åhlén, Michelle, Di Gallo, Nicole, Strømme, Maria, Kipping, Thomas, Quodbach, Julian, Lindh, Jonas
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Netherlands Elsevier B.V 25.03.2023
Schlagworte:
ISSN:0378-5173, 1873-3476, 1873-3476
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract [Display omitted] Large batches of placebo and drug-loaded solid dosage forms were successfully fabricated using selective laser sintering (SLS) 3D printing in this study. The tablet batches were prepared using either copovidone (N-vinyl-2-pyrrolidone and vinyl acetate, PVP/VA) or polyvinyl alcohol (PVA) and activated carbon (AC) as radiation absorbent, which was added to improve the sintering of the polymer. The physical properties of the dosage forms were evaluated at different pigment concentrations (i.e., 0.5 and 1.0 wt%) and at different laser energy inputs. The mass, hardness, and friability of the tablets were found to be tunable and structures with greater mass and mechanical strength were obtained with increasing carbon concentration and energy input. Amorphization of the active pharmaceutical ingredient in the drug-loaded batches, containing 10 wt% naproxen and 1 wt% AC, was achieved in-situ during printing. Thus, amorphous solid dispersions were prepared in a single-step process and produced tablets with mass losses below 1 wt%. These findings show how the properties of dosage forms can be tuned by careful selection of the process parameters and the powder formulation. SLS 3D printing can therefore be considered to be an interesting and promising technique for the fabrication of personalized medicines.
AbstractList Large batches of placebo and drug-loaded solid dosage forms were successfully fabricated using selective laser sintering (SLS) 3D printing in this study. The tablet batches were prepared using either copovidone (N-vinyl-2-pyrrolidone and vinyl acetate, PVP/VA) or polyvinyl alcohol (PVA) and activated carbon (AC) as radiation absorbent, which was added to improve the sintering of the polymer. The physical properties of the dosage forms were evaluated at different pigment concentrations (i.e., 0.5 and 1.0 wt%) and at different laser energy inputs. The mass, hardness, and friability of the tablets were found to be tunable and structures with greater mass and mechanical strength were obtained with increasing carbon concentration and energy input. Amorphization of the active pharmaceutical ingredient in the drug-loaded batches, containing 10 wt% naproxen and 1 wt% AC, was achieved in-situ during printing. Thus, amorphous solid dispersions were prepared in a single-step process and produced tablets with mass losses below 1 wt%. These findings show how the properties of dosage forms can be tuned by careful selection of the process parameters and the powder formulation. SLS 3D printing can therefore be considered to be an interesting and promising technique for the fabrication of personalized medicines.
[Display omitted] Large batches of placebo and drug-loaded solid dosage forms were successfully fabricated using selective laser sintering (SLS) 3D printing in this study. The tablet batches were prepared using either copovidone (N-vinyl-2-pyrrolidone and vinyl acetate, PVP/VA) or polyvinyl alcohol (PVA) and activated carbon (AC) as radiation absorbent, which was added to improve the sintering of the polymer. The physical properties of the dosage forms were evaluated at different pigment concentrations (i.e., 0.5 and 1.0 wt%) and at different laser energy inputs. The mass, hardness, and friability of the tablets were found to be tunable and structures with greater mass and mechanical strength were obtained with increasing carbon concentration and energy input. Amorphization of the active pharmaceutical ingredient in the drug-loaded batches, containing 10 wt% naproxen and 1 wt% AC, was achieved in-situ during printing. Thus, amorphous solid dispersions were prepared in a single-step process and produced tablets with mass losses below 1 wt%. These findings show how the properties of dosage forms can be tuned by careful selection of the process parameters and the powder formulation. SLS 3D printing can therefore be considered to be an interesting and promising technique for the fabrication of personalized medicines.
Large batches of placebo and drug-loaded solid dosage forms were successfully fabricated using selective laser sintering (SLS) 3D printing in this study. The tablet batches were prepared using either copovidone (N-vinyl-2-pyrrolidone and vinyl acetate, PVP/VA) or polyvinyl alcohol (PVA) and activated carbon (AC) as radiation absorbent, which was added to improve the sintering of the polymer. The physical properties of the dosage forms were evaluated at different pigment concentrations (i.e., 0.5 and 1.0 wt%) and at different laser energy inputs. The mass, hardness, and friability of the tablets were found to be tunable and structures with greater mass and mechanical strength were obtained with increasing carbon concentration and energy input. Amorphization of the active pharmaceutical ingredient in the drug-loaded batches, containing 10 wt% naproxen and 1 wt% AC, was achieved in-situ during printing. Thus, amorphous solid dispersions were prepared in a single-step process and produced tablets with mass losses below 1 wt%. These findings show how the properties of dosage forms can be tuned by careful selection of the process parameters and the powder formulation. SLS 3D printing can therefore be considered to be an interesting and promising technique for the fabrication of personalized medicines.Large batches of placebo and drug-loaded solid dosage forms were successfully fabricated using selective laser sintering (SLS) 3D printing in this study. The tablet batches were prepared using either copovidone (N-vinyl-2-pyrrolidone and vinyl acetate, PVP/VA) or polyvinyl alcohol (PVA) and activated carbon (AC) as radiation absorbent, which was added to improve the sintering of the polymer. The physical properties of the dosage forms were evaluated at different pigment concentrations (i.e., 0.5 and 1.0 wt%) and at different laser energy inputs. The mass, hardness, and friability of the tablets were found to be tunable and structures with greater mass and mechanical strength were obtained with increasing carbon concentration and energy input. Amorphization of the active pharmaceutical ingredient in the drug-loaded batches, containing 10 wt% naproxen and 1 wt% AC, was achieved in-situ during printing. Thus, amorphous solid dispersions were prepared in a single-step process and produced tablets with mass losses below 1 wt%. These findings show how the properties of dosage forms can be tuned by careful selection of the process parameters and the powder formulation. SLS 3D printing can therefore be considered to be an interesting and promising technique for the fabrication of personalized medicines.
ArticleNumber 122780
Author Lindh, Jonas
Strømme, Maria
Kipping, Thomas
Di Gallo, Nicole
Tikhomirov, Evgenii
Åhlén, Michelle
Quodbach, Julian
Author_xml – sequence: 1
  givenname: Evgenii
  orcidid: 0000-0003-0072-4458
  surname: Tikhomirov
  fullname: Tikhomirov, Evgenii
  organization: Division of Nanotechnology and Functional Materials, Department of Materials Science and Engineering, Ångström Laboratory, Uppsala University, Uppsala SE-751 03, Box 35, Sweden
– sequence: 2
  givenname: Michelle
  surname: Åhlén
  fullname: Åhlén, Michelle
  organization: Division of Nanotechnology and Functional Materials, Department of Materials Science and Engineering, Ångström Laboratory, Uppsala University, Uppsala SE-751 03, Box 35, Sweden
– sequence: 3
  givenname: Nicole
  surname: Di Gallo
  fullname: Di Gallo, Nicole
  organization: Merck KGaA, Frankfurter Str. 250, Postcode: D033/001, Darmstadt DE-642 93, Germany
– sequence: 4
  givenname: Maria
  surname: Strømme
  fullname: Strømme, Maria
  organization: Division of Nanotechnology and Functional Materials, Department of Materials Science and Engineering, Ångström Laboratory, Uppsala University, Uppsala SE-751 03, Box 35, Sweden
– sequence: 5
  givenname: Thomas
  surname: Kipping
  fullname: Kipping, Thomas
  organization: Merck KGaA, Frankfurter Str. 250, Postcode: D033/001, Darmstadt DE-642 93, Germany
– sequence: 6
  givenname: Julian
  surname: Quodbach
  fullname: Quodbach, Julian
  email: j.h.j.quodbach@uu.nl
  organization: Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, the Netherlands
– sequence: 7
  givenname: Jonas
  orcidid: 0000-0001-5196-4115
  surname: Lindh
  fullname: Lindh, Jonas
  email: Jonas.Lindh@angstrom.uu.se
  organization: Division of Nanotechnology and Functional Materials, Department of Materials Science and Engineering, Ångström Laboratory, Uppsala University, Uppsala SE-751 03, Box 35, Sweden
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36849041$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-499246$$DView record from Swedish Publication Index (Uppsala universitet)
BookMark eNqFkctu1DAUhiNURC_wCCAvWTCDHcdOAgtUlXKRKrHgsrVO7OMZj5I42E6rPg8vijMzdMGmK0vH3__p6PznxcnoRyyKl4yuGWXy7W7tdtMWwrAuacnXrCzrhj4pzlhT8xWvanlSnFFeNyvBan5anMe4o5TKkvFnxSmXTdXSip0Vf75jjzq5WyQ9RAwkujFhcOOGgDFu_zHAOFvQad6PvSXGR9ggsT4M8R25tjYblvnk70xWLPO5h-T8SGA0ZApeY4xkggADZnsk-SdtkUzb--g09AsyYUgO494TliUMSdD1mOLz4qmFPuKL43tR_Px0_ePqy-rm2-evV5c3K11VbVpJqQVI0dUSRSeg49aAZKWpmgprSrFmLe8aBlTwUmhstbCVNNR0YBvLAPhF8ebgjXc4zZ3KawwQ7pUHpz66X5fKh42aZ1W1bVnJjL8-4Hn53zPGpAYXNfY9jOjnqJZCaim4qDL66ojO3YDmwfyvhwyIA6CDjzGgfUAYVUvfaqeOfaulb3XoO-fe_5fTLu0vnwK4_tH0h0Ma81VvHQYVtcNRo3EhV6qMd48Y_gLnL86E
CitedBy_id crossref_primary_10_1016_j_ijpx_2025_100383
crossref_primary_10_1016_j_jddst_2025_107166
crossref_primary_10_1080_10426914_2024_2394995
crossref_primary_10_1016_j_jconrel_2023_11_022
crossref_primary_10_1080_09205063_2025_2505350
crossref_primary_10_1177_07316844241273038
crossref_primary_10_1016_j_jpba_2023_115396
crossref_primary_10_1016_j_pmatsci_2024_101282
crossref_primary_10_3389_fddev_2024_1358336
crossref_primary_10_1016_j_ijpharm_2024_125116
crossref_primary_10_1155_adv_1937029
crossref_primary_10_1111_1750_3841_70125
crossref_primary_10_1002_adem_202300122
crossref_primary_10_1016_j_foodchem_2024_140348
crossref_primary_10_1016_j_jconrel_2024_07_035
crossref_primary_10_1016_j_ijpharm_2024_124161
crossref_primary_10_1016_j_jddst_2023_104699
crossref_primary_10_1016_j_jmbbm_2024_106393
crossref_primary_10_1007_s13346_023_01414_8
crossref_primary_10_1039_D5PM00070J
crossref_primary_10_1080_09205063_2025_2458841
crossref_primary_10_1134_S0040579523050342
crossref_primary_10_1016_j_ijmecsci_2024_109328
crossref_primary_10_1016_j_polymer_2024_127823
crossref_primary_10_3390_s24092668
crossref_primary_10_1108_RPJ_09_2023_0326
crossref_primary_10_3390_pharmaceutics17060794
crossref_primary_10_1016_j_ijpharm_2025_125415
crossref_primary_10_1208_s12249_025_03141_4
crossref_primary_10_1016_j_addr_2024_115504
crossref_primary_10_1016_j_ijpx_2023_100203
crossref_primary_10_1016_j_pmatsci_2024_101336
crossref_primary_10_1021_acs_molpharmaceut_5c00413
crossref_primary_10_1016_j_ijpharm_2024_124299
crossref_primary_10_1080_17425247_2024_2379943
Cites_doi 10.1080/03639045.2020.1764027
10.3390/pharmaceutics13101676
10.1038/161929a0
10.3390/pharmaceutics13020160
10.1208/s12249-020-01775-0
10.3390/pharmaceutics11120645
10.1108/13552541111138397
10.3390/pharmaceutics13081212
10.1016/j.jpba.2019.112937
10.3390/pharmaceutics13081149
10.1111/apa.14718
10.1016/j.ejpb.2020.09.012
10.1016/j.ijpharm.2018.02.015
10.1208/s12249-018-1075-3
10.1016/j.jconrel.2020.10.056
10.3139/217.2452
10.1016/j.addr.2021.05.003
10.1021/acs.molpharmaceut.2c00163
10.1021/acs.molpharmaceut.1c00557
10.1016/j.ijpharm.2018.04.055
10.1016/j.tips.2018.02.006
10.3390/pharmaceutics14030589
10.1016/j.jddst.2019.05.037
10.1016/j.ijpharm.2020.119594
10.1016/j.xphs.2020.11.012
10.1016/j.addr.2021.113943
10.3390/pharmaceutics13111969
10.3390/pharmaceutics12020110
10.1016/j.ijpharm.2018.05.044
10.1016/j.addr.2021.04.025
10.1016/j.ijpharm.2016.03.016
10.1016/j.xphs.2020.06.027
10.1007/s11095-019-2655-y
10.1016/j.ijpharm.2020.119066
10.1021/acs.molpharmaceut.9b00703
10.1016/j.ijpharm.2007.11.048
10.1016/j.progpolymsci.2019.03.003
10.1016/j.ijpharm.2020.120059
10.1016/j.ijpharm.2017.06.082
10.3390/ma15062142
ContentType Journal Article
Copyright 2023 The Authors
Copyright © 2023 The Authors. Published by Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2023 The Authors
– notice: Copyright © 2023 The Authors. Published by Elsevier B.V. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ACNBI
ADTPV
AOWAS
D8T
DF2
ZZAVC
DOI 10.1016/j.ijpharm.2023.122780
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
SWEPUB Uppsala universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Uppsala universitet
SwePub Articles full text
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1873-3476
ExternalDocumentID oai_DiVA_org_uu_499246
36849041
10_1016_j_ijpharm_2023_122780
S0378517323002004
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
6I.
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABOCM
ABZDS
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
C45
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M34
M41
MO0
N9A
O-L
O9-
OAUVE
OGGZJ
OVD
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPCBC
SSP
SSZ
T5K
TEORI
~02
~G-
.GJ
29J
3O-
53G
5VS
9DU
AAQXK
AATTM
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HMT
HVGLF
HZ~
R2-
SEW
SPT
WUQ
ZXP
~HD
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ACNBI
ADTPV
AOWAS
D8T
DF2
ZZAVC
ID FETCH-LOGICAL-c449t-66c5a65b76e5b5ab3fda612d484e700e7193b81a05325ce9c5f46d0dbaf8f1aa3
ISICitedReferencesCount 39
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000956438700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0378-5173
1873-3476
IngestDate Tue Nov 04 16:57:56 EST 2025
Sun Nov 09 10:07:42 EST 2025
Wed Feb 19 02:25:03 EST 2025
Tue Nov 18 22:36:06 EST 2025
Sat Nov 29 02:36:35 EST 2025
Sat Jan 18 16:09:04 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Drug manufacturing
Three-dimensional printing
Personalized medicines
Selective laser sintering
Additive manufacturing
Language English
License This is an open access article under the CC BY license.
Copyright © 2023 The Authors. Published by Elsevier B.V. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c449t-66c5a65b76e5b5ab3fda612d484e700e7193b81a05325ce9c5f46d0dbaf8f1aa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0072-4458
0000-0001-5196-4115
OpenAccessLink https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-499246
PMID 36849041
PQID 2780765354
PQPubID 23479
ParticipantIDs swepub_primary_oai_DiVA_org_uu_499246
proquest_miscellaneous_2780765354
pubmed_primary_36849041
crossref_primary_10_1016_j_ijpharm_2023_122780
crossref_citationtrail_10_1016_j_ijpharm_2023_122780
elsevier_sciencedirect_doi_10_1016_j_ijpharm_2023_122780
PublicationCentury 2000
PublicationDate 2023-03-25
PublicationDateYYYYMMDD 2023-03-25
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-25
  day: 25
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle International journal of pharmaceutics
PublicationTitleAlternate Int J Pharm
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Healy, Fuenmayor, Doran, Geever, Higginbotham, Lyons (b0105) 2019; 11
van der Vossen, Al-Hassany, Buljac, Brugma, Vulto, Hanff (b0225) 2019; 108
Kader, Liminga, Ljungman, Paulsson (b0110) 2021; 13
Charoo, Barakh Ali, Mohamed, Kuttolamadom, Ozkan, Khan, Rahman (b0040) 2020; 46
Kulinowski, Malczewski, Łaszcz, Baran, Milanowski, Kuprianowicz, Dorożyński (b0130) 2022; 15
Awad, Fina, Goyanes, Gaisford, Basit (b0010) 2020; 586
Qi, Gryczke, Belton, Craig (b0165) 2008; 354
ed., 2.9.7. Friability of Uncoated Tablets, Strasbourg, 2020, pp. 336-337.
Schmid (b0180) 2018
Yan, Shi, Hao (b0235) 2011; 26
Mohamed, Barakh Ali, Rahman, Dharani, Ozkan, Kuttolamadom, Khan (b0155) 2020; 21
European Pharmacopoeia 10
Matijašić, Gretić, Vinčić, Poropat, Cuculić, Rahelić (b0150) 2019; 52
Thakkar, Jara, Swinnea, Pillai, Maniruzzaman (b0200) 2021; 13
Sen, Mehta, Sansare, Sharifi, Ma, Chaudhuri (b0185) 2021; 177
Bordos, Islam, Florence, Halbert, Robertson (b0020) 2019; 16
Chatham, Long, Williams (b0045) 2019; 93
Fina, Goyanes, Gaisford, Basit (b0070) 2017; 529
Chang, Li, Kowsari, Shetty, Sorrells, Sen, Nagapudi, Chaudhuri, Ma (b0035) 2020; 109
Trenfield, Tan, Goyanes, Wilsdon, Rowland, Gaisford, Basit (b0215) 2020; 577
Bunn (b0025) 1948; 161
Awad, Fina, Goyanes, Gaisford, Basit (b0015) 2021; 174
The United States Pharmacopeia and National Formulary USP 37–NF 32, Dissolution, The United States Pharmacopeial Convention, Inc., Rockville, MD, 2014.
Trenfield, Awad, Goyanes, Gaisford, Basit (b0210) 2018; 39
Dedroog, Pas, Vergauwen, Huygens, Van den Mooter (b0060) 2020; 178
El Aita, Rahman, Breitkreutz, Quodbach (b0065) 2020; 157
Wang, Goyanes, Gaisford, Basit (b0230) 2016; 503
Allahham, Fina, Marcuta, Kraschew, Mohr, Gaisford, Basit, Goyanes (b0005) 2020; 12
Kulinowski, Malczewski, Pesta, Łaszcz, Mendyk, Polak, Dorożyński (b0125) 2021; 38
Cailleaux, Sanchez-Ballester, Gueche, Bataille, Soulairol (b0030) 2021; 330
Fina, Madla, Goyanes, Zhang, Gaisford, Basit (b0075) 2018; 541
Santitewagun, Thakkar, Zeitler, Maniruzzaman (b0170) 2022; 19
Cooke, Tomlinson, Burguete, Johns, Vanard (b0050) 2011; 17
Gueche, Sanchez-Ballester, Cailleaux, Bataille, Soulairol (b0090) 2021; 13
Lekurwale, Karanwad, Banerjee (b0135) 2022; 6
Hamed, Mohamed, Rahman, Khan (b0100) 2021; 592
Martinez, Goyanes, Basit, Gaisford (b0145) 2018; 19
Thakkar, Davis, Williams, Maniruzzaman (b0195) 2021; 18
Gueche, Sanchez-Ballester, Bataille, Aubert, Leclercq, Rossi, Soulairol (b0085) 2021; 13
Schmid (b0175) 2018
Gultekin, Tort, Acarturk (b0095) 2019; 36
Kollamaram, Croker, Walker, Goyanes, Basit, Gaisford (b0115) 2018; 545
Seoane-Viano, Trenfield, Basit, Goyanes (b0190) 2021; 174
Davis, Thakkar, Su, Williams, Maniruzzaman (b0055) 2021; 110
Fina, Goyanes, Madla, Awad, Trenfield, Kuek, Patel, Gaisford, Basit (b0080) 2018; 547
Konta, Garcia-Pina, Serrano (b0120) 2017; 4
Trenfield, Januskaite, Goyanes, Wilsdon, Rowland, Gaisford, Basit (b0220) 2022; 14
Madžarević, Medarević, Pavlović, Ivković, Đuriš, Ibrić (b0140) 2021; 13
El Aita (10.1016/j.ijpharm.2023.122780_b0065) 2020; 157
Dedroog (10.1016/j.ijpharm.2023.122780_b0060) 2020; 178
Qi (10.1016/j.ijpharm.2023.122780_b0165) 2008; 354
Kulinowski (10.1016/j.ijpharm.2023.122780_b0130) 2022; 15
Cailleaux (10.1016/j.ijpharm.2023.122780_b0030) 2021; 330
Trenfield (10.1016/j.ijpharm.2023.122780_b0210) 2018; 39
Awad (10.1016/j.ijpharm.2023.122780_b0015) 2021; 174
Healy (10.1016/j.ijpharm.2023.122780_b0105) 2019; 11
Seoane-Viano (10.1016/j.ijpharm.2023.122780_b0190) 2021; 174
Fina (10.1016/j.ijpharm.2023.122780_b0080) 2018; 547
Chatham (10.1016/j.ijpharm.2023.122780_b0045) 2019; 93
Sen (10.1016/j.ijpharm.2023.122780_b0185) 2021; 177
Gueche (10.1016/j.ijpharm.2023.122780_b0090) 2021; 13
Hamed (10.1016/j.ijpharm.2023.122780_b0100) 2021; 592
Yan (10.1016/j.ijpharm.2023.122780_b0235) 2011; 26
Martinez (10.1016/j.ijpharm.2023.122780_b0145) 2018; 19
Allahham (10.1016/j.ijpharm.2023.122780_b0005) 2020; 12
Lekurwale (10.1016/j.ijpharm.2023.122780_b0135) 2022; 6
Cooke (10.1016/j.ijpharm.2023.122780_b0050) 2011; 17
Mohamed (10.1016/j.ijpharm.2023.122780_b0155) 2020; 21
Matijašić (10.1016/j.ijpharm.2023.122780_b0150) 2019; 52
Trenfield (10.1016/j.ijpharm.2023.122780_b0220) 2022; 14
Chang (10.1016/j.ijpharm.2023.122780_b0035) 2020; 109
Gultekin (10.1016/j.ijpharm.2023.122780_b0095) 2019; 36
Awad (10.1016/j.ijpharm.2023.122780_b0010) 2020; 586
Charoo (10.1016/j.ijpharm.2023.122780_b0040) 2020; 46
Bunn (10.1016/j.ijpharm.2023.122780_b0025) 1948; 161
Fina (10.1016/j.ijpharm.2023.122780_b0070) 2017; 529
Trenfield (10.1016/j.ijpharm.2023.122780_b0215) 2020; 577
Fina (10.1016/j.ijpharm.2023.122780_b0075) 2018; 541
Bordos (10.1016/j.ijpharm.2023.122780_b0020) 2019; 16
Davis (10.1016/j.ijpharm.2023.122780_b0055) 2021; 110
Thakkar (10.1016/j.ijpharm.2023.122780_b0195) 2021; 18
Gueche (10.1016/j.ijpharm.2023.122780_b0085) 2021; 13
Kollamaram (10.1016/j.ijpharm.2023.122780_b0115) 2018; 545
Santitewagun (10.1016/j.ijpharm.2023.122780_b0170) 2022; 19
10.1016/j.ijpharm.2023.122780_b0205
Kulinowski (10.1016/j.ijpharm.2023.122780_b0125) 2021; 38
van der Vossen (10.1016/j.ijpharm.2023.122780_b0225) 2019; 108
Schmid (10.1016/j.ijpharm.2023.122780_b0180) 2018
Wang (10.1016/j.ijpharm.2023.122780_b0230) 2016; 503
Madžarević (10.1016/j.ijpharm.2023.122780_b0140) 2021; 13
10.1016/j.ijpharm.2023.122780_b0160
Kader (10.1016/j.ijpharm.2023.122780_b0110) 2021; 13
Konta (10.1016/j.ijpharm.2023.122780_b0120) 2017; 4
Thakkar (10.1016/j.ijpharm.2023.122780_b0200) 2021; 13
Schmid (10.1016/j.ijpharm.2023.122780_b0175) 2018
References_xml – volume: 547
  start-page: 44
  year: 2018
  end-page: 52
  ident: b0080
  article-title: 3D printing of drug-loaded gyroid lattices using selective laser sintering
  publication-title: Int. J. Pharm.
– reference: European Pharmacopoeia 10
– volume: 586
  year: 2020
  ident: b0010
  article-title: 3D printing: Principles and pharmaceutical applications of selective laser sintering
  publication-title: Int. J. Pharm.
– volume: 14
  start-page: 589
  year: 2022
  ident: b0220
  article-title: Prediction of solid-state form of SLS 3D printed medicines using NIR and Raman spectroscopy
  publication-title: Pharmaceutics
– volume: 545
  start-page: 144
  year: 2018
  end-page: 152
  ident: b0115
  article-title: Low temperature fused deposition modeling (FDM) 3D printing of thermolabile drugs
  publication-title: Int. J. Pharm.
– volume: 6
  start-page: pp
  year: 2022
  ident: b0135
  publication-title: Ann. 3D Print Med.
– reference: ed., 2.9.7. Friability of Uncoated Tablets, Strasbourg, 2020, pp. 336-337.
– volume: 4
  start-page: pp
  year: 2017
  ident: b0120
  article-title: Personalised 3D printed medicines: Which techniques and polymers are more successful?
  publication-title: Bioeng.
– volume: 13
  start-page: 1969
  year: 2021
  ident: b0140
  article-title: Understanding the effect of energy density and formulation factors on the printability and characteristics of SLS irbesartan tablets-application of the decision tree model
  publication-title: Pharmaceutics
– volume: 39
  start-page: 440
  year: 2018
  end-page: 451
  ident: b0210
  article-title: 3D printing pharmaceuticals: Drug development to frontline care
  publication-title: Trends Pharmacol. Sci.
– volume: 108
  start-page: 1475
  year: 2019
  end-page: 1481
  ident: b0225
  article-title: Manipulation of oral medication for children by parents and nurses occurs frequently and is often not supported by instructions
  publication-title: Acta Paediatr
– volume: 38
  start-page: pp
  year: 2021
  ident: b0125
  article-title: Selective laser sintering (SLS) technique for pharmaceutical applications—Development of high dose controlled release printlets
  publication-title: Addit. Manuf.
– volume: 52
  start-page: 677
  year: 2019
  end-page: 686
  ident: b0150
  article-title: Design and 3D printing of multi-compartmental PVA capsules for drug delivery
  publication-title: J. Drug Delivery Sci. Technol.
– volume: 19
  start-page: 2380
  year: 2022
  end-page: 2389
  ident: b0170
  article-title: Detecting crystallinity using terahertz spectroscopy in 3D printed amorphous solid dispersions
  publication-title: Mol. Pharm.
– volume: 15
  start-page: 2142
  year: 2022
  ident: b0130
  article-title: Development of composite, reinforced, highly drug-loaded pharmaceutical printlets manufactured by selective laser sintering-in search of relevant excipients for pharmaceutical 3D printing
  publication-title: Materials
– volume: 503
  start-page: 207
  year: 2016
  end-page: 212
  ident: b0230
  article-title: Stereolithographic (SLA) 3D printing of oral modified-release dosage forms
  publication-title: Int. J. Pharm.
– volume: 46
  start-page: 869
  year: 2020
  end-page: 877
  ident: b0040
  article-title: Selective laser sintering 3D printing - an overview of the technology and pharmaceutical applications
  publication-title: Drug Dev. Ind. Pharm.
– volume: 110
  start-page: 1432
  year: 2021
  end-page: 1443
  ident: b0055
  article-title: Selective laser sintering 3-dimensional printing as a single step process to prepare amorphous solid dispersion dosage forms for improved solubility and dissolution rate
  publication-title: J. Pharm. Sci.
– volume: 93
  start-page: 68
  year: 2019
  end-page: 95
  ident: b0045
  article-title: A review of the process physics and material screening methods for polymer powder bed fusion additive manufacturing
  publication-title: Prog. Polym. Sci.
– volume: 177
  year: 2021
  ident: b0185
  article-title: Pharmaceutical applications of powder-based binder jet 3D printing process - A review
  publication-title: Adv. Drug Deliv. Rev.
– volume: 178
  year: 2020
  ident: b0060
  article-title: Solid-state analysis of amorphous solid dispersions: Why DSC and XRPD may not be regarded as stand-alone techniques
  publication-title: J. Pharm. Biomed. Anal.
– year: 2018
  ident: b0175
  article-title: Laser sintering with plastics: Technology, processes, and materials
– volume: 354
  start-page: 158
  year: 2008
  end-page: 167
  ident: b0165
  article-title: Characterisation of solid dispersions of paracetamol and EUDRAGIT® prepared by hot-melt extrusion using thermal, microthermal and spectroscopic analysis
  publication-title: Int. J. Pharm.
– volume: 19
  start-page: 3355
  year: 2018
  end-page: 3361
  ident: b0145
  article-title: Influence of geometry on the drug release profiles of stereolithographic (SLA) 3D-printed tablets
  publication-title: AAPS PharmSciTech
– volume: 109
  start-page: 3054
  year: 2020
  end-page: 3063
  ident: b0035
  article-title: Binder-jet 3D printing of indomethacin-laden pharmaceutical dosage forms
  publication-title: J. Pharm. Sci.
– volume: 18
  start-page: 3894
  year: 2021
  end-page: 3908
  ident: b0195
  article-title: Selective laser sintering of a photosensitive drug: Impact of processing and formulation parameters on degradation, solid state, and quality of 3D-printed dosage forms
  publication-title: Mol. Pharm.
– volume: 592
  year: 2021
  ident: b0100
  article-title: 3D-printing of lopinavir printlets by selective laser sintering and quantification of crystalline fraction by XRPD-chemometric models
  publication-title: Int. J. Pharm.
– volume: 174
  start-page: 553
  year: 2021
  end-page: 575
  ident: b0190
  article-title: Translating 3D printed pharmaceuticals: From hype to real-world clinical applications
  publication-title: Adv. Drug Deliv. Rev.
– volume: 16
  start-page: 4361
  year: 2019
  end-page: 4371
  ident: b0020
  article-title: Use of terahertz-raman spectroscopy to determine solubility of the crystalline active pharmaceutical ingredient in polymeric matrices during hot melt extrusion
  publication-title: Mol. Pharmaceutics
– volume: 13
  start-page: pp
  year: 2021
  ident: b0090
  article-title: Selective laser sintering (SLS), a new chapter in the production of solid oral forms (SOFs) by 3D printing
  publication-title: Pharmaceutics
– volume: 157
  start-page: 59
  year: 2020
  end-page: 65
  ident: b0065
  article-title: 3D-Printing with precise layer-wise dose adjustments for paediatric use via pressure-assisted microsyringe printing
  publication-title: Eur. J. Pharm. Biopharm.
– volume: 577
  year: 2020
  ident: b0215
  article-title: Non-destructive dose verification of two drugs within 3D printed polyprintlets
  publication-title: Int. J. Pharm.
– volume: 529
  start-page: 285
  year: 2017
  end-page: 293
  ident: b0070
  article-title: Selective laser sintering (SLS) 3D printing of medicines
  publication-title: Int. J. Pharm.
– volume: 541
  start-page: 101
  year: 2018
  end-page: 107
  ident: b0075
  article-title: Fabricating 3D printed orally disintegrating printlets using selective laser sintering
  publication-title: Int. J. Pharm.
– volume: 13
  start-page: pp
  year: 2021
  ident: b0200
  article-title: Impact of laser speed and drug particle size on selective laser sintering 3D printing of amorphous solid dispersions
  publication-title: Pharmaceutics
– volume: 26
  start-page: 416
  year: 2011
  end-page: 423
  ident: b0235
  article-title: Investigation into the differences in the selective laser sintering between amorphous and semi-crystalline polymers
  publication-title: Int. Polym. Process.
– volume: 11
  start-page: pp
  year: 2019
  ident: b0105
  article-title: Additive manufacturing of personalized pharmaceutical dosage forms via stereolithography
  publication-title: Pharmaceutics
– reference: The United States Pharmacopeia and National Formulary USP 37–NF 32, <711> Dissolution, The United States Pharmacopeial Convention, Inc., Rockville, MD, 2014.
– volume: 174
  start-page: 406
  year: 2021
  end-page: 424
  ident: b0015
  article-title: Advances in powder bed fusion 3D printing in drug delivery and healthcare
  publication-title: Adv. Drug Deliv. Rev.
– volume: 161
  start-page: 929
  year: 1948
  end-page: 930
  ident: b0025
  article-title: Crystal structure of polyvinyl alcohol
  publication-title: Nature
– volume: 330
  start-page: 821
  year: 2021
  end-page: 841
  ident: b0030
  article-title: Fused deposition modeling (FDM), the new asset for the production of tailored medicines
  publication-title: J. Control Release
– volume: 17
  start-page: 269
  year: 2011
  end-page: 279
  ident: b0050
  article-title: Anisotropy, homogeneity and ageing in an SLS polymer
  publication-title: Rapid Prototyp. J.
– volume: 21
  start-page: 232
  year: 2020
  ident: b0155
  article-title: Formulation optimization of selective laser sintering 3D-printed tablets of clindamycin palmitate hydrochloride by response surface methodology
  publication-title: AAPS PharmSciTech
– volume: 13
  start-page: 160
  year: 2021
  ident: b0085
  article-title: Selective laser sintering of solid oral dosage forms with copovidone and paracetamol using a CO
  publication-title: Pharmaceutics
– volume: 13
  start-page: 1676
  year: 2021
  ident: b0110
  article-title: Manipulations of oral medications in paediatric neurology and oncology care at a Swedish university hospital: Health professionals' attitudes and sources of information
  publication-title: Pharmaceutics
– volume: 36
  start-page: 128
  year: 2019
  ident: b0095
  article-title: An effective technology for the development of immediate release solid dosage forms containing low-dose drug: Fused deposition modeling 3D printing
  publication-title: Pharm. Res.
– start-page: 65
  year: 2018
  end-page: 99
  ident: b0180
  article-title: LS materials: Polymer properties
  publication-title: Laser sintering with plastics: Technology, processes, and materials
– volume: 12
  start-page: 110
  year: 2020
  ident: b0005
  article-title: Selective laser sintering 3D printing of orally disintegrating printlets containing ondansetron
  publication-title: Pharmaceutics
– volume: 46
  start-page: 869
  year: 2020
  ident: 10.1016/j.ijpharm.2023.122780_b0040
  article-title: Selective laser sintering 3D printing - an overview of the technology and pharmaceutical applications
  publication-title: Drug Dev. Ind. Pharm.
  doi: 10.1080/03639045.2020.1764027
– volume: 13
  start-page: 1676
  year: 2021
  ident: 10.1016/j.ijpharm.2023.122780_b0110
  article-title: Manipulations of oral medications in paediatric neurology and oncology care at a Swedish university hospital: Health professionals' attitudes and sources of information
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics13101676
– volume: 161
  start-page: 929
  year: 1948
  ident: 10.1016/j.ijpharm.2023.122780_b0025
  article-title: Crystal structure of polyvinyl alcohol
  publication-title: Nature
  doi: 10.1038/161929a0
– volume: 13
  start-page: 160
  year: 2021
  ident: 10.1016/j.ijpharm.2023.122780_b0085
  article-title: Selective laser sintering of solid oral dosage forms with copovidone and paracetamol using a CO2 laser
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics13020160
– ident: 10.1016/j.ijpharm.2023.122780_b0160
– volume: 21
  start-page: 232
  year: 2020
  ident: 10.1016/j.ijpharm.2023.122780_b0155
  article-title: Formulation optimization of selective laser sintering 3D-printed tablets of clindamycin palmitate hydrochloride by response surface methodology
  publication-title: AAPS PharmSciTech
  doi: 10.1208/s12249-020-01775-0
– volume: 4
  start-page: pp
  year: 2017
  ident: 10.1016/j.ijpharm.2023.122780_b0120
  article-title: Personalised 3D printed medicines: Which techniques and polymers are more successful?
  publication-title: Bioeng.
– volume: 11
  start-page: pp
  year: 2019
  ident: 10.1016/j.ijpharm.2023.122780_b0105
  article-title: Additive manufacturing of personalized pharmaceutical dosage forms via stereolithography
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics11120645
– volume: 17
  start-page: 269
  year: 2011
  ident: 10.1016/j.ijpharm.2023.122780_b0050
  article-title: Anisotropy, homogeneity and ageing in an SLS polymer
  publication-title: Rapid Prototyp. J.
  doi: 10.1108/13552541111138397
– volume: 13
  start-page: pp
  year: 2021
  ident: 10.1016/j.ijpharm.2023.122780_b0090
  article-title: Selective laser sintering (SLS), a new chapter in the production of solid oral forms (SOFs) by 3D printing
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics13081212
– volume: 178
  year: 2020
  ident: 10.1016/j.ijpharm.2023.122780_b0060
  article-title: Solid-state analysis of amorphous solid dispersions: Why DSC and XRPD may not be regarded as stand-alone techniques
  publication-title: J. Pharm. Biomed. Anal.
  doi: 10.1016/j.jpba.2019.112937
– volume: 6
  start-page: pp
  year: 2022
  ident: 10.1016/j.ijpharm.2023.122780_b0135
  article-title: Selective laser sintering (SLS) of 3D printlets using a 3D printer comprised of IR/red-diode laser
  publication-title: Ann. 3D Print Med.
– volume: 13
  start-page: pp
  year: 2021
  ident: 10.1016/j.ijpharm.2023.122780_b0200
  article-title: Impact of laser speed and drug particle size on selective laser sintering 3D printing of amorphous solid dispersions
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics13081149
– volume: 108
  start-page: 1475
  year: 2019
  ident: 10.1016/j.ijpharm.2023.122780_b0225
  article-title: Manipulation of oral medication for children by parents and nurses occurs frequently and is often not supported by instructions
  publication-title: Acta Paediatr
  doi: 10.1111/apa.14718
– volume: 157
  start-page: 59
  year: 2020
  ident: 10.1016/j.ijpharm.2023.122780_b0065
  article-title: 3D-Printing with precise layer-wise dose adjustments for paediatric use via pressure-assisted microsyringe printing
  publication-title: Eur. J. Pharm. Biopharm.
  doi: 10.1016/j.ejpb.2020.09.012
– volume: 541
  start-page: 101
  year: 2018
  ident: 10.1016/j.ijpharm.2023.122780_b0075
  article-title: Fabricating 3D printed orally disintegrating printlets using selective laser sintering
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2018.02.015
– volume: 19
  start-page: 3355
  year: 2018
  ident: 10.1016/j.ijpharm.2023.122780_b0145
  article-title: Influence of geometry on the drug release profiles of stereolithographic (SLA) 3D-printed tablets
  publication-title: AAPS PharmSciTech
  doi: 10.1208/s12249-018-1075-3
– volume: 330
  start-page: 821
  year: 2021
  ident: 10.1016/j.ijpharm.2023.122780_b0030
  article-title: Fused deposition modeling (FDM), the new asset for the production of tailored medicines
  publication-title: J. Control Release
  doi: 10.1016/j.jconrel.2020.10.056
– volume: 26
  start-page: 416
  year: 2011
  ident: 10.1016/j.ijpharm.2023.122780_b0235
  article-title: Investigation into the differences in the selective laser sintering between amorphous and semi-crystalline polymers
  publication-title: Int. Polym. Process.
  doi: 10.3139/217.2452
– volume: 174
  start-page: 553
  year: 2021
  ident: 10.1016/j.ijpharm.2023.122780_b0190
  article-title: Translating 3D printed pharmaceuticals: From hype to real-world clinical applications
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2021.05.003
– volume: 19
  start-page: 2380
  year: 2022
  ident: 10.1016/j.ijpharm.2023.122780_b0170
  article-title: Detecting crystallinity using terahertz spectroscopy in 3D printed amorphous solid dispersions
  publication-title: Mol. Pharm.
  doi: 10.1021/acs.molpharmaceut.2c00163
– year: 2018
  ident: 10.1016/j.ijpharm.2023.122780_b0175
– volume: 18
  start-page: 3894
  year: 2021
  ident: 10.1016/j.ijpharm.2023.122780_b0195
  article-title: Selective laser sintering of a photosensitive drug: Impact of processing and formulation parameters on degradation, solid state, and quality of 3D-printed dosage forms
  publication-title: Mol. Pharm.
  doi: 10.1021/acs.molpharmaceut.1c00557
– volume: 545
  start-page: 144
  year: 2018
  ident: 10.1016/j.ijpharm.2023.122780_b0115
  article-title: Low temperature fused deposition modeling (FDM) 3D printing of thermolabile drugs
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2018.04.055
– volume: 39
  start-page: 440
  year: 2018
  ident: 10.1016/j.ijpharm.2023.122780_b0210
  article-title: 3D printing pharmaceuticals: Drug development to frontline care
  publication-title: Trends Pharmacol. Sci.
  doi: 10.1016/j.tips.2018.02.006
– volume: 14
  start-page: 589
  year: 2022
  ident: 10.1016/j.ijpharm.2023.122780_b0220
  article-title: Prediction of solid-state form of SLS 3D printed medicines using NIR and Raman spectroscopy
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics14030589
– volume: 52
  start-page: 677
  year: 2019
  ident: 10.1016/j.ijpharm.2023.122780_b0150
  article-title: Design and 3D printing of multi-compartmental PVA capsules for drug delivery
  publication-title: J. Drug Delivery Sci. Technol.
  doi: 10.1016/j.jddst.2019.05.037
– volume: 586
  year: 2020
  ident: 10.1016/j.ijpharm.2023.122780_b0010
  article-title: 3D printing: Principles and pharmaceutical applications of selective laser sintering
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2020.119594
– volume: 110
  start-page: 1432
  year: 2021
  ident: 10.1016/j.ijpharm.2023.122780_b0055
  article-title: Selective laser sintering 3-dimensional printing as a single step process to prepare amorphous solid dispersion dosage forms for improved solubility and dissolution rate
  publication-title: J. Pharm. Sci.
  doi: 10.1016/j.xphs.2020.11.012
– volume: 177
  year: 2021
  ident: 10.1016/j.ijpharm.2023.122780_b0185
  article-title: Pharmaceutical applications of powder-based binder jet 3D printing process - A review
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2021.113943
– volume: 13
  start-page: 1969
  year: 2021
  ident: 10.1016/j.ijpharm.2023.122780_b0140
  article-title: Understanding the effect of energy density and formulation factors on the printability and characteristics of SLS irbesartan tablets-application of the decision tree model
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics13111969
– volume: 12
  start-page: 110
  year: 2020
  ident: 10.1016/j.ijpharm.2023.122780_b0005
  article-title: Selective laser sintering 3D printing of orally disintegrating printlets containing ondansetron
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics12020110
– volume: 547
  start-page: 44
  year: 2018
  ident: 10.1016/j.ijpharm.2023.122780_b0080
  article-title: 3D printing of drug-loaded gyroid lattices using selective laser sintering
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2018.05.044
– volume: 174
  start-page: 406
  year: 2021
  ident: 10.1016/j.ijpharm.2023.122780_b0015
  article-title: Advances in powder bed fusion 3D printing in drug delivery and healthcare
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2021.04.025
– volume: 503
  start-page: 207
  year: 2016
  ident: 10.1016/j.ijpharm.2023.122780_b0230
  article-title: Stereolithographic (SLA) 3D printing of oral modified-release dosage forms
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2016.03.016
– volume: 109
  start-page: 3054
  year: 2020
  ident: 10.1016/j.ijpharm.2023.122780_b0035
  article-title: Binder-jet 3D printing of indomethacin-laden pharmaceutical dosage forms
  publication-title: J. Pharm. Sci.
  doi: 10.1016/j.xphs.2020.06.027
– start-page: 65
  year: 2018
  ident: 10.1016/j.ijpharm.2023.122780_b0180
  article-title: LS materials: Polymer properties
– volume: 36
  start-page: 128
  year: 2019
  ident: 10.1016/j.ijpharm.2023.122780_b0095
  article-title: An effective technology for the development of immediate release solid dosage forms containing low-dose drug: Fused deposition modeling 3D printing
  publication-title: Pharm. Res.
  doi: 10.1007/s11095-019-2655-y
– volume: 577
  year: 2020
  ident: 10.1016/j.ijpharm.2023.122780_b0215
  article-title: Non-destructive dose verification of two drugs within 3D printed polyprintlets
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2020.119066
– volume: 16
  start-page: 4361
  year: 2019
  ident: 10.1016/j.ijpharm.2023.122780_b0020
  article-title: Use of terahertz-raman spectroscopy to determine solubility of the crystalline active pharmaceutical ingredient in polymeric matrices during hot melt extrusion
  publication-title: Mol. Pharmaceutics
  doi: 10.1021/acs.molpharmaceut.9b00703
– volume: 354
  start-page: 158
  year: 2008
  ident: 10.1016/j.ijpharm.2023.122780_b0165
  article-title: Characterisation of solid dispersions of paracetamol and EUDRAGIT® prepared by hot-melt extrusion using thermal, microthermal and spectroscopic analysis
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2007.11.048
– volume: 93
  start-page: 68
  year: 2019
  ident: 10.1016/j.ijpharm.2023.122780_b0045
  article-title: A review of the process physics and material screening methods for polymer powder bed fusion additive manufacturing
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2019.03.003
– ident: 10.1016/j.ijpharm.2023.122780_b0205
– volume: 592
  year: 2021
  ident: 10.1016/j.ijpharm.2023.122780_b0100
  article-title: 3D-printing of lopinavir printlets by selective laser sintering and quantification of crystalline fraction by XRPD-chemometric models
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2020.120059
– volume: 529
  start-page: 285
  year: 2017
  ident: 10.1016/j.ijpharm.2023.122780_b0070
  article-title: Selective laser sintering (SLS) 3D printing of medicines
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2017.06.082
– volume: 38
  start-page: pp
  year: 2021
  ident: 10.1016/j.ijpharm.2023.122780_b0125
  article-title: Selective laser sintering (SLS) technique for pharmaceutical applications—Development of high dose controlled release printlets
  publication-title: Addit. Manuf.
– volume: 15
  start-page: 2142
  year: 2022
  ident: 10.1016/j.ijpharm.2023.122780_b0130
  article-title: Development of composite, reinforced, highly drug-loaded pharmaceutical printlets manufactured by selective laser sintering-in search of relevant excipients for pharmaceutical 3D printing
  publication-title: Materials
  doi: 10.3390/ma15062142
SSID ssj0006213
Score 2.562189
Snippet [Display omitted] Large batches of placebo and drug-loaded solid dosage forms were successfully fabricated using selective laser sintering (SLS) 3D printing in...
Large batches of placebo and drug-loaded solid dosage forms were successfully fabricated using selective laser sintering (SLS) 3D printing in this study. The...
SourceID swepub
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 122780
SubjectTerms Additive manufacturing
Dosage Forms
Drug Compounding - methods
Drug Liberation
Drug manufacturing
Engineering Science with specialization in Nanotechnology and Functional Materials
Lasers
Personalized medicines
Polymers - chemistry
Powders
Printing, Three-Dimensional
Selective laser sintering
Tablets - chemistry
Technology, Pharmaceutical - methods
Teknisk fysik med inriktning mot nanoteknologi och funktionella material
Three-dimensional printing
Title Selective laser sintering additive manufacturing of dosage forms: Effect of powder formulation and process parameters on the physical properties of printed tablets
URI https://dx.doi.org/10.1016/j.ijpharm.2023.122780
https://www.ncbi.nlm.nih.gov/pubmed/36849041
https://www.proquest.com/docview/2780765354
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-499246
Volume 635
WOSCitedRecordID wos000956438700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-3476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006213
  issn: 1873-3476
  databaseCode: AIEXJ
  dateStart: 19950102
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6DaG9IO6Uy2Qk2MuWLontXHgrMG6CadIK6lvkJA7NWJOqN7bfw0_jj-DjS7KrBg-8RFVcO2nPZ_vYPt93EHrhZ4EvPJY5hHjcoVRQ2aUocULhC5FyuWLJVNaSz-HeXjQcxvudzm_LhVkehVUVHR_Hk_9qanlPGhuos_9g7qZReUN-lkaXV2l2ef0rwx-ozDYQECQdY9BqBkUIzUXMcx0pNObVAhgNmqIo3cW8hvgyxWRUIXJG0xiioeufoDYBJSbRl5EWUPyCLVAOH0NEjT11MFslwO-Cbf4p6LWqdqbwGvnWHKhaWj3K-sRnNyVPSVlMRu1-e-P6D8ofo3pcTuulGsaX8n8oS1sIx_4RGx3p4_-GFwCHE43HXm695-bASXWDpuRgrsIGXkdjnTn-C9ch2M2uiE8gLEwzqHtCj-RRSBxCdXIZO9QHhJ0arD2gAbuXziN6S-OwVx6qn9qDR_Qufl9aZDJWOCJBRGNXa3idE_C2RStozQ9ZLGePtf7H3eGnxmEIfI-05LKdS5-6jm7adq7yoC6ukM7J3yqXaXAb3TJrHdzXGL2DOqK6izb3tVVPtvGg5f7NtvEm3m9l1E_uoV8NkLECMm6AjC2Q8Rkg47rAGshYAfkV1jCG-xrG-BSMsYQxNjDGLYyxLJEwxhbGuIWxakfDGBsY30df3-0O3nxwTEoRJ6M0njtBkDEesDQMBEsZT0mRc-nj5zSiInRdEcr1TBp5HPKlsEzEGStokLt5youo8DgnD9BqVVfiEcKuXNuD0lIaFozSIItokcnlU-YRKnJZoYuoNVOSGb19SPtylNjAysPEGDoBQyfa0F3Ua6pNtODMdRUii4HEeM3aG04kmK-r-txiJpGzChwV8krUi1kCpWHACKNd9FCDqXkbi8MueqnR1ZSAVP3b8ls_qaffk8UioXHs0-DxlS08Qett332KVufThXiGbmTLeTmbbqCVcBhtmM7yB0OgCoY
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Selective+laser+sintering+additive+manufacturing+of+dosage+forms%3A+Effect+of+powder+formulation+and+process+parameters+on+the+physical+properties+of+printed+tablets&rft.jtitle=International+journal+of+pharmaceutics&rft.au=Tikhomirov%2C+Evgenii&rft.au=%C3%85hl%C3%A9n%2C+Michelle&rft.au=Di+Gallo%2C+Nicole&rft.au=Str%C3%B8mme%2C+Maria&rft.date=2023-03-25&rft.eissn=1873-3476&rft.volume=635&rft.spage=122780&rft_id=info:doi/10.1016%2Fj.ijpharm.2023.122780&rft_id=info%3Apmid%2F36849041&rft.externalDocID=36849041
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-5173&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-5173&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-5173&client=summon