Schizophrenic patients and their unaffected siblings share increased resting-state connectivity in the task-negative network but not its anticorrelated task-positive network
Abnormal connectivity of the anticorrelated intrinsic networks, the task-negative network (TNN), and the task-positive network (TPN) is implicated in schizophrenia. Comparisons between schizophrenic patients and their unaffected siblings enable further understanding of illness susceptibility and pat...
Gespeichert in:
| Veröffentlicht in: | Schizophrenia bulletin Jg. 38; H. 2; S. 285 |
|---|---|
| Hauptverfasser: | , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
01.03.2012
|
| Schlagworte: | |
| ISSN: | 1745-1701, 1745-1701 |
| Online-Zugang: | Weitere Angaben |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Abnormal connectivity of the anticorrelated intrinsic networks, the task-negative network (TNN), and the task-positive network (TPN) is implicated in schizophrenia. Comparisons between schizophrenic patients and their unaffected siblings enable further understanding of illness susceptibility and pathophysiology. We examined the resting-state connectivity differences in the intrinsic networks between schizophrenic patients, their unaffected siblings, and healthy controls.
Resting-state functional magnetic resonance images were obtained from 25 individuals in each subject group. The posterior cingulate cortex/precuneus and right dorsolateral prefrontal cortex were used as seed regions to identify the TNN and TPN through functional connectivity analysis. Interregional connectivity strengths were analyzed using overlapped intrinsic networks composed of regions common to all subject groups.
Schizophrenic patients and their unaffected siblings showed increased connectivity in the TNN between the bilateral inferior temporal gyri. By contrast, schizophrenic patients alone demonstrated increased connectivity between the posterior cingulate cortex/precuneus and left inferior temporal gyrus and between the ventral medial prefrontal cortex and right lateral parietal cortex in the TNN. Schizophrenic patients exhibited increased connectivity between the left dorsolateral prefrontal cortex and right inferior frontal gyrus in the TPN relative to their unaffected siblings, though this trend only approached statistical significance in comparison to healthy controls.
Resting-state hyperconnectivity of the intrinsic networks may disrupt network coordination and thereby contribute to the pathophysiology of schizophrenia. Similar, though milder, hyperconnectivity of the TNN in unaffected siblings of schizophrenic patients may contribute to the identification of schizophrenia endophenotypes and ultimately to the determination of schizophrenia risk genes. |
|---|---|
| AbstractList | Abnormal connectivity of the anticorrelated intrinsic networks, the task-negative network (TNN), and the task-positive network (TPN) is implicated in schizophrenia. Comparisons between schizophrenic patients and their unaffected siblings enable further understanding of illness susceptibility and pathophysiology. We examined the resting-state connectivity differences in the intrinsic networks between schizophrenic patients, their unaffected siblings, and healthy controls.
Resting-state functional magnetic resonance images were obtained from 25 individuals in each subject group. The posterior cingulate cortex/precuneus and right dorsolateral prefrontal cortex were used as seed regions to identify the TNN and TPN through functional connectivity analysis. Interregional connectivity strengths were analyzed using overlapped intrinsic networks composed of regions common to all subject groups.
Schizophrenic patients and their unaffected siblings showed increased connectivity in the TNN between the bilateral inferior temporal gyri. By contrast, schizophrenic patients alone demonstrated increased connectivity between the posterior cingulate cortex/precuneus and left inferior temporal gyrus and between the ventral medial prefrontal cortex and right lateral parietal cortex in the TNN. Schizophrenic patients exhibited increased connectivity between the left dorsolateral prefrontal cortex and right inferior frontal gyrus in the TPN relative to their unaffected siblings, though this trend only approached statistical significance in comparison to healthy controls.
Resting-state hyperconnectivity of the intrinsic networks may disrupt network coordination and thereby contribute to the pathophysiology of schizophrenia. Similar, though milder, hyperconnectivity of the TNN in unaffected siblings of schizophrenic patients may contribute to the identification of schizophrenia endophenotypes and ultimately to the determination of schizophrenia risk genes. Abnormal connectivity of the anticorrelated intrinsic networks, the task-negative network (TNN), and the task-positive network (TPN) is implicated in schizophrenia. Comparisons between schizophrenic patients and their unaffected siblings enable further understanding of illness susceptibility and pathophysiology. We examined the resting-state connectivity differences in the intrinsic networks between schizophrenic patients, their unaffected siblings, and healthy controls.BACKGROUNDAbnormal connectivity of the anticorrelated intrinsic networks, the task-negative network (TNN), and the task-positive network (TPN) is implicated in schizophrenia. Comparisons between schizophrenic patients and their unaffected siblings enable further understanding of illness susceptibility and pathophysiology. We examined the resting-state connectivity differences in the intrinsic networks between schizophrenic patients, their unaffected siblings, and healthy controls.Resting-state functional magnetic resonance images were obtained from 25 individuals in each subject group. The posterior cingulate cortex/precuneus and right dorsolateral prefrontal cortex were used as seed regions to identify the TNN and TPN through functional connectivity analysis. Interregional connectivity strengths were analyzed using overlapped intrinsic networks composed of regions common to all subject groups.METHODSResting-state functional magnetic resonance images were obtained from 25 individuals in each subject group. The posterior cingulate cortex/precuneus and right dorsolateral prefrontal cortex were used as seed regions to identify the TNN and TPN through functional connectivity analysis. Interregional connectivity strengths were analyzed using overlapped intrinsic networks composed of regions common to all subject groups.Schizophrenic patients and their unaffected siblings showed increased connectivity in the TNN between the bilateral inferior temporal gyri. By contrast, schizophrenic patients alone demonstrated increased connectivity between the posterior cingulate cortex/precuneus and left inferior temporal gyrus and between the ventral medial prefrontal cortex and right lateral parietal cortex in the TNN. Schizophrenic patients exhibited increased connectivity between the left dorsolateral prefrontal cortex and right inferior frontal gyrus in the TPN relative to their unaffected siblings, though this trend only approached statistical significance in comparison to healthy controls.RESULTSSchizophrenic patients and their unaffected siblings showed increased connectivity in the TNN between the bilateral inferior temporal gyri. By contrast, schizophrenic patients alone demonstrated increased connectivity between the posterior cingulate cortex/precuneus and left inferior temporal gyrus and between the ventral medial prefrontal cortex and right lateral parietal cortex in the TNN. Schizophrenic patients exhibited increased connectivity between the left dorsolateral prefrontal cortex and right inferior frontal gyrus in the TPN relative to their unaffected siblings, though this trend only approached statistical significance in comparison to healthy controls.Resting-state hyperconnectivity of the intrinsic networks may disrupt network coordination and thereby contribute to the pathophysiology of schizophrenia. Similar, though milder, hyperconnectivity of the TNN in unaffected siblings of schizophrenic patients may contribute to the identification of schizophrenia endophenotypes and ultimately to the determination of schizophrenia risk genes.CONCLUSIONResting-state hyperconnectivity of the intrinsic networks may disrupt network coordination and thereby contribute to the pathophysiology of schizophrenia. Similar, though milder, hyperconnectivity of the TNN in unaffected siblings of schizophrenic patients may contribute to the identification of schizophrenia endophenotypes and ultimately to the determination of schizophrenia risk genes. |
| Author | Liu, Zhening Li, Li Jiang, Tianzi Ouyang, Xuan Liu, Haihong Chen, Eric Y H Zhou, Yuan Kaneko, Yoshio Hao, Yihui |
| Author_xml | – sequence: 1 givenname: Haihong surname: Liu fullname: Liu, Haihong organization: Mental Health Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China – sequence: 2 givenname: Yoshio surname: Kaneko fullname: Kaneko, Yoshio – sequence: 3 givenname: Xuan surname: Ouyang fullname: Ouyang, Xuan – sequence: 4 givenname: Li surname: Li fullname: Li, Li – sequence: 5 givenname: Yihui surname: Hao fullname: Hao, Yihui – sequence: 6 givenname: Eric Y H surname: Chen fullname: Chen, Eric Y H – sequence: 7 givenname: Tianzi surname: Jiang fullname: Jiang, Tianzi – sequence: 8 givenname: Yuan surname: Zhou fullname: Zhou, Yuan – sequence: 9 givenname: Zhening surname: Liu fullname: Liu, Zhening |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20595202$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkEtPwzAQhC1URB9w5Ip84xRqu05THxHiJVXiQO-VH5vGNLVT2wGV_8R_JC1F6mlXmm9mtDtEPecdIHRNyR0lYjKOulJtPY5qSwp-hga04HlGC0J7J3sfDWP8IIRyMWUXqM9ILnJG2AD9vOvKfvumCuCsxo1MFlyKWDqDUwU24NbJsgSdwOBoVW3dKuJYyQDYOh1Axk4IEFMnZDHJBFh75zqD_bRp10H7HJxkXGcOVl3-J2AH6cuHNVZtws4nbA-NyWofAtRy33UwND7aU8MlOi9lHeHqOEdo8fS4eHjJ5m_Prw_380xzLlKWq6nQJeOcGgGFgVIoMjWFFLneC6D5xJSCS6ZnhhZMTXmpcjDAjOKs5GyEbv9im-C3bXfbcmOjhrqWDnwbl4JN6Gw2y1lH3hzJVm3ALJtgNzLslv8PZr8ay4dE |
| CitedBy_id | crossref_primary_10_1016_j_neubiorev_2025_106239 crossref_primary_10_3389_fnins_2021_621716 crossref_primary_10_1016_j_pscychresns_2020_111170 crossref_primary_10_1016_j_pscychresns_2014_08_014 crossref_primary_10_1016_j_schres_2019_12_010 crossref_primary_10_1007_s12264_024_01214_1 crossref_primary_10_1177_0269881117705071 crossref_primary_10_1016_j_pnpbp_2020_109959 crossref_primary_10_1007_s12264_016_0090_1 crossref_primary_10_1016_j_schres_2017_10_007 crossref_primary_10_1093_schbul_sby112 crossref_primary_10_1002_hbm_25020 crossref_primary_10_1016_j_nicl_2015_03_017 crossref_primary_10_1016_j_biopsych_2023_12_002 crossref_primary_10_3389_fphar_2022_833518 crossref_primary_10_1038_s41386_018_0026_8 crossref_primary_10_1016_j_neuroimage_2011_12_090 crossref_primary_10_1016_j_neubiorev_2012_08_002 crossref_primary_10_1016_j_pscychresns_2025_111985 crossref_primary_10_1371_journal_pone_0133766 crossref_primary_10_1016_j_neuroimage_2013_04_002 crossref_primary_10_1016_j_schres_2011_03_020 crossref_primary_10_1111_jcpp_12307 crossref_primary_10_1016_j_conb_2015_07_008 crossref_primary_10_3390_ijms24031913 crossref_primary_10_1016_j_nicl_2022_102970 crossref_primary_10_1093_schbul_sbt163 crossref_primary_10_1371_journal_pcbi_1003591 crossref_primary_10_1038_s41537_025_00658_2 crossref_primary_10_1016_j_schres_2012_11_020 crossref_primary_10_3389_fpsyt_2017_00298 crossref_primary_10_1016_j_biopsych_2013_04_024 crossref_primary_10_1016_j_psychres_2022_114934 crossref_primary_10_1016_j_neuroimage_2011_07_086 crossref_primary_10_1016_j_schres_2018_01_003 crossref_primary_10_1002_brb3_2535 crossref_primary_10_3389_fnins_2019_00731 crossref_primary_10_1097_WNR_0000000000000622 crossref_primary_10_1016_j_neubiorev_2019_07_001 crossref_primary_10_3389_fnbeh_2015_00045 crossref_primary_10_1016_j_pneurobio_2016_08_003 crossref_primary_10_1146_annurev_clinpsy_032511_143049 crossref_primary_10_3389_fpsyt_2018_00137 crossref_primary_10_3389_fneur_2021_766736 crossref_primary_10_1016_j_tips_2014_05_001 crossref_primary_10_1371_journal_pone_0120030 crossref_primary_10_1002_wps_20177 crossref_primary_10_1093_schizbullopen_sgab032 crossref_primary_10_1016_j_neubiorev_2013_10_004 crossref_primary_10_1016_j_neucom_2019_07_061 crossref_primary_10_1016_j_pscychresns_2016_07_002 crossref_primary_10_1016_j_schres_2016_03_014 crossref_primary_10_1016_j_schres_2012_09_017 crossref_primary_10_1016_j_heliyon_2022_e10818 crossref_primary_10_1016_j_schres_2017_07_014 crossref_primary_10_1007_s11571_010_9126_9 crossref_primary_10_3389_fnins_2022_921547 crossref_primary_10_3390_jcm12093176 crossref_primary_10_1017_S0033291715002755 crossref_primary_10_1016_j_biopsych_2022_09_029 crossref_primary_10_1016_j_pscychresns_2017_03_012 crossref_primary_10_1093_schbul_sbx194 crossref_primary_10_1017_S0033291720002391 crossref_primary_10_1016_j_neuroimage_2014_04_009 crossref_primary_10_1016_j_brainres_2014_03_024 crossref_primary_10_1523_JNEUROSCI_2987_11_2011 crossref_primary_10_1017_S003329172000416X crossref_primary_10_1111_pcn_13745 crossref_primary_10_1016_j_jpsychires_2020_02_005 crossref_primary_10_1111_ejn_15970 crossref_primary_10_1002_ajmg_b_32170 crossref_primary_10_1093_schbul_sbz103 crossref_primary_10_1017_S0033291716002816 crossref_primary_10_1002_hbm_23501 crossref_primary_10_1016_j_jad_2023_05_057 crossref_primary_10_1016_j_nicl_2018_09_016 crossref_primary_10_1016_j_ajp_2024_104106 crossref_primary_10_1038_srep11218 crossref_primary_10_1186_1475_925X_12_10 crossref_primary_10_3389_fncel_2022_1006797 crossref_primary_10_1007_s11065_012_9199_9 crossref_primary_10_1093_cercor_bhad131 crossref_primary_10_1016_j_ajp_2024_104077 crossref_primary_10_1038_s41398_017_0055_9 crossref_primary_10_1016_j_jagp_2013_03_005 crossref_primary_10_1016_j_schres_2014_03_031 crossref_primary_10_1016_j_nicl_2015_01_004 crossref_primary_10_1017_S0033291714002426 crossref_primary_10_1016_j_bcp_2013_06_011 crossref_primary_10_1016_j_psychres_2019_112603 crossref_primary_10_1038_srep17275 crossref_primary_10_1007_s12264_013_1300_8 crossref_primary_10_1002_hbm_22924 crossref_primary_10_3389_fnhum_2022_956831 crossref_primary_10_1093_schbul_sbac052 crossref_primary_10_1016_j_schres_2015_07_031 crossref_primary_10_1038_s41537_022_00288_y |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1093/schbul/sbq074 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| EISSN | 1745-1701 |
| ExternalDocumentID | 20595202 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- -E4 -~X .2P .GJ .I3 .XZ .ZR 0R~ 123 186 18M 1KJ 1TH 2WC 4.4 48X 53G 5RE 5VS 5WA 5WD 70D 7RZ 85S AABZA AACZT AAILS AAJKP AAJQQ AAMDB AAMVS AAOGV AAPNW AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP AAWTL ABDFA ABEJV ABEUO ABGNP ABIVO ABIXL ABJNI ABKDP ABLJU ABNCP ABNHQ ABNKS ABOCM ABPPZ ABPQP ABPTD ABQLI ABQNK ABQTQ ABSMQ ABVGC ABVOZ ABWST ABXVV ABZBJ ACFRR ACGFO ACGFS ACGOD ACHQT ACNCT ACPQG ACUFI ACUTJ ACUTO ACVCV ACYHN ADBBV ADCFL ADEYI ADEZT ADGZP ADHKW ADHZD ADIPN ADNBA ADOCK ADQBN ADRTK ADVEK ADYVW ADZXQ AEGPL AEGXH AEHFB AEHKS AEJOX AEKSI AEMDU AEMQT AENEX AENZO AEPUE AETBJ AETEA AEWNT AFFNX AFFZL AFIYH AFOFC AFXAL AGINJ AGKEF AGMDO AGQXC AGSYK AGUTN AHMBA AHMMS AHXPO AIAGR AIJHB AJEEA AJNCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX AOIJS APIBT APJGH APWMN AQKUS ATGXG AWKKM AXUDD AZXWR BAWUL BAYMD BCRHZ BEYMZ BHONS BTRTY BVRKM BZKNY C45 CAG CDBKE CGNQK CGR COF CS3 CUY CVF CZ4 DAKXR DIK DILTD DU5 D~K E3Z EBD EBS ECM EE~ EIF EJD EMOBN ENERS EPA F5P F9B FA8 FECEO FLUFQ FOEOM FOTVD FQBLK FTD GAUVT GJXCC GX1 H13 H5~ HAR HVGLF HW0 HYE HZ~ H~9 IOX ISO J21 JXSIZ KBUDW KOP KSI KSN M-Z M49 MBLQV MHKGH N4W N9A NGC NOMLY NOYVH NPM NTWIH NU- O0~ O9- OAUYM OAWHX OCZFY ODMLO OJQWA OJZSN OK1 OPA OPAEJ OVD OWPYF O~Y P2P PAFKI PEELM PHGZT PQQKQ Q1. Q5Y R44 RD5 RNI ROL ROX ROZ RPM RUSNO RW1 RXO RZF SPA SV3 TEORI TJX TN5 TR2 TWZ ULE W8F WH7 WOQ X7H XJT XOL YAYTL YKOAZ YNT YR5 YROCO YXANX YYQ YZZ ZGI ZKX ZPI ~91 7X8 AAFWJ AJBYB NAPCQ |
| ID | FETCH-LOGICAL-c449t-5b69cf2441d9e7def9b06d7a95c69cfec43df94a2c8d172b64fb5ede2db42f42 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 84 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000300731100016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1745-1701 |
| IngestDate | Sun Sep 28 16:19:23 EDT 2025 Thu Apr 03 07:09:34 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c449t-5b69cf2441d9e7def9b06d7a95c69cfec43df94a2c8d172b64fb5ede2db42f42 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://academic.oup.com/schizophreniabulletin/article-pdf/38/2/285/16703962/sbq074.pdf |
| PMID | 20595202 |
| PQID | 923188852 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_923188852 pubmed_primary_20595202 |
| PublicationCentury | 2000 |
| PublicationDate | 2012-03-01 |
| PublicationDateYYYYMMDD | 2012-03-01 |
| PublicationDate_xml | – month: 03 year: 2012 text: 2012-03-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Schizophrenia bulletin |
| PublicationTitleAlternate | Schizophr Bull |
| PublicationYear | 2012 |
| References | 16407773 - Neuroreport. 2006 Feb 6;17(2):209-13 16166612 - Schizophr Bull. 2006 Jan;32(1):179-94 15993895 - J Psychiatr Res. 2007 Jan-Feb;41(1-2):49-56 18488025 - Nat Neurosci. 2008 Jun;11(6):637-9 18299296 - Brain. 2008 Apr;131(Pt 4):945-61 10893535 - Magn Reson Med. 2000 Jul;44(1):162-7 16330585 - Am J Psychiatry. 2005 Dec;162(12):2233-45 18219617 - Hum Brain Mapp. 2009 Feb;30(2):625-37 18556667 - Schizophr Bull. 2009 Nov;35(6):1142-62 18824195 - Neurosci Biobehav Rev. 2009 Mar;33(3):279-96 17079659 - J Neurosci. 2006 Nov 1;26(44):11313-23 17151161 - Am J Psychiatry. 2006 Dec;163(12):2103-10 7651009 - Lancet. 1995 Sep 2;346(8975):615-20 7476241 - Mem Cognit. 1995 Sep;23(5):551-9 11341714 - IEEE Trans Med Imaging. 2001 Mar;20(3):243-8 18854323 - Brain. 2008 Dec;131(Pt 12):3169-77 10719152 - Brain Res Brain Res Rev. 2000 Mar;31(2-3):251-69 19164577 - Proc Natl Acad Sci U S A. 2009 Jan 27;106(4):1279-84 12880804 - Neuroimage. 2003 Jul;19(3):751-63 12880848 - Neuroimage. 2003 Jul;19(3):1233-9 8790444 - Proc Natl Acad Sci U S A. 1996 Sep 3;93(18):9985-90 17606811 - Arch Gen Psychiatry. 2007 Jul;64(7):772-80 19541369 - J Affect Disord. 2010 Mar;121(3):220-30 9137127 - Am J Psychiatry. 1997 May;154(5):682-4 17399900 - Neurosci Lett. 2007 May 7;417(3):297-302 19042912 - Schizophr Bull. 2009 Jan;35(1):19-31 12957705 - Schizophr Res. 2003 Oct 1;63(3):261-71 10769304 - J Cogn Neurosci. 2000 Jan;12(1):1-47 15976020 - Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9673-8 12668349 - Am J Psychiatry. 2003 Apr;160(4):636-45 15474899 - Schizophr Res. 2004 Dec 1;71(2-3):285-95 18082428 - Neuroimage. 2008 Feb 15;39(4):1666-81 9613621 - Schizophr Bull. 1998;24(2):203-18 17560126 - Neuroimage. 2007 Aug 1;37(1):90-101 11074868 - Arch Gen Psychiatry. 2000 Nov;57(11):1033-8 14638592 - Am J Psychiatry. 2003 Dec;160(12):2209-15 10813800 - Am J Med Genet. 2000 Spring;97(1):12-7 20065955 - Mol Psychiatry. 2010 Aug;15(8):823-30 15927520 - Trends Cogn Sci. 2005 Jul;9(7):314-6 11584306 - Nat Rev Neurosci. 2001 Oct;2(10):685-94 16246526 - Schizophr Res. 2006 Jan 31;81(2-3):217-26 18400922 - Ann N Y Acad Sci. 2008 Mar;1124:1-38 18723676 - Proc Natl Acad Sci U S A. 2008 Aug 26;105(34):12569-74 18507885 - Psychol Med. 2008 Aug;38(8):1185-93 11513374 - Psychol Med. 2001 Aug;31(6):1065-78 9558644 - Neuroimage. 1998 Feb;7(2):119-32 18227083 - Schizophr Bull. 2008 Mar;34(2):330-40 17329470 - Am J Psychiatry. 2007 Mar;164(3):450-7 19666074 - Prog Neuropsychopharmacol Biol Psychiatry. 2009 Nov 13;33(8):1464-73 12506194 - Proc Natl Acad Sci U S A. 2003 Jan 7;100(1):253-8 9549774 - Schizophr Res. 1998 Mar 10;30(2):115-25 11209064 - Proc Natl Acad Sci U S A. 2001 Jan 16;98(2):676-82 18598773 - Neuroimage. 2008 Sep 1;42(3):1178-84 3947207 - Arch Gen Psychiatry. 1986 Feb;43(2):114-24 17493957 - Schizophr Bull. 2007 Jul;33(4):994-1003 8930966 - Neuroreport. 1996 Sep 2;7(13):2095-9 17628434 - Schizophr Res. 2007 Dec;97(1-3):194-205 15852468 - Hum Brain Mapp. 2005 Sep;26(1):15-29 17234951 - Science. 2007 Jan 19;315(5810):393-5 15846824 - Hum Brain Mapp. 2005 May;25(1):22-34 17525980 - Hum Brain Mapp. 2008 May;29(5):533-43 17716091 - Annu Rev Clin Psychol. 2005;1:321-53 19155345 - Schizophr Bull. 2009 May;35(3):509-27 17966093 - Am J Hum Genet. 2007 Dec;81(6):1158-68 17556752 - Schizophr Bull. 2007 Jul;33(4):1004-12 7477346 - Nature. 1995 Nov 16;378(6554):279-81 18939983 - Source Code Biol Med. 2008 Oct 21;3:15 16343785 - Neuroscience. 2006 Apr 28;139(1):277-89 15337650 - Am J Psychiatry. 2004 Sep;161(9):1603-11 11994752 - Nat Rev Neurosci. 2002 Mar;3(3):201-15 8941962 - Philos Trans R Soc Lond B Biol Sci. 1996 Oct 29;351(1346):1505-12 16361943 - Neuroreport. 2006 Jan 23;17(1):19-22 18486104 - Biol Psychiatry. 2008 Nov 1;64(9):774-81 12814576 - Neuroimage. 2003 Jun;19(2 Pt 1):253-60 19777578 - Hum Brain Mapp. 2010 Mar;31(3):424-37 7477318 - Nature. 1995 Nov 9;378(6553):176-9 11164733 - Trends Cogn Sci. 2001 Jan 1;5(1):26-36 |
| References_xml | – reference: 18486104 - Biol Psychiatry. 2008 Nov 1;64(9):774-81 – reference: 11341714 - IEEE Trans Med Imaging. 2001 Mar;20(3):243-8 – reference: 18507885 - Psychol Med. 2008 Aug;38(8):1185-93 – reference: 17399900 - Neurosci Lett. 2007 May 7;417(3):297-302 – reference: 17079659 - J Neurosci. 2006 Nov 1;26(44):11313-23 – reference: 11994752 - Nat Rev Neurosci. 2002 Mar;3(3):201-15 – reference: 17560126 - Neuroimage. 2007 Aug 1;37(1):90-101 – reference: 15852468 - Hum Brain Mapp. 2005 Sep;26(1):15-29 – reference: 15976020 - Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9673-8 – reference: 18598773 - Neuroimage. 2008 Sep 1;42(3):1178-84 – reference: 18939983 - Source Code Biol Med. 2008 Oct 21;3:15 – reference: 15474899 - Schizophr Res. 2004 Dec 1;71(2-3):285-95 – reference: 9549774 - Schizophr Res. 1998 Mar 10;30(2):115-25 – reference: 12880848 - Neuroimage. 2003 Jul;19(3):1233-9 – reference: 16407773 - Neuroreport. 2006 Feb 6;17(2):209-13 – reference: 19164577 - Proc Natl Acad Sci U S A. 2009 Jan 27;106(4):1279-84 – reference: 11584306 - Nat Rev Neurosci. 2001 Oct;2(10):685-94 – reference: 17556752 - Schizophr Bull. 2007 Jul;33(4):1004-12 – reference: 18299296 - Brain. 2008 Apr;131(Pt 4):945-61 – reference: 11164733 - Trends Cogn Sci. 2001 Jan 1;5(1):26-36 – reference: 7477318 - Nature. 1995 Nov 9;378(6553):176-9 – reference: 11513374 - Psychol Med. 2001 Aug;31(6):1065-78 – reference: 11074868 - Arch Gen Psychiatry. 2000 Nov;57(11):1033-8 – reference: 18400922 - Ann N Y Acad Sci. 2008 Mar;1124:1-38 – reference: 8930966 - Neuroreport. 1996 Sep 2;7(13):2095-9 – reference: 17966093 - Am J Hum Genet. 2007 Dec;81(6):1158-68 – reference: 16246526 - Schizophr Res. 2006 Jan 31;81(2-3):217-26 – reference: 12957705 - Schizophr Res. 2003 Oct 1;63(3):261-71 – reference: 20065955 - Mol Psychiatry. 2010 Aug;15(8):823-30 – reference: 17606811 - Arch Gen Psychiatry. 2007 Jul;64(7):772-80 – reference: 8790444 - Proc Natl Acad Sci U S A. 1996 Sep 3;93(18):9985-90 – reference: 12506194 - Proc Natl Acad Sci U S A. 2003 Jan 7;100(1):253-8 – reference: 18723676 - Proc Natl Acad Sci U S A. 2008 Aug 26;105(34):12569-74 – reference: 18227083 - Schizophr Bull. 2008 Mar;34(2):330-40 – reference: 19155345 - Schizophr Bull. 2009 May;35(3):509-27 – reference: 15927520 - Trends Cogn Sci. 2005 Jul;9(7):314-6 – reference: 18082428 - Neuroimage. 2008 Feb 15;39(4):1666-81 – reference: 8941962 - Philos Trans R Soc Lond B Biol Sci. 1996 Oct 29;351(1346):1505-12 – reference: 7651009 - Lancet. 1995 Sep 2;346(8975):615-20 – reference: 7477346 - Nature. 1995 Nov 16;378(6554):279-81 – reference: 17329470 - Am J Psychiatry. 2007 Mar;164(3):450-7 – reference: 17234951 - Science. 2007 Jan 19;315(5810):393-5 – reference: 17525980 - Hum Brain Mapp. 2008 May;29(5):533-43 – reference: 12814576 - Neuroimage. 2003 Jun;19(2 Pt 1):253-60 – reference: 16361943 - Neuroreport. 2006 Jan 23;17(1):19-22 – reference: 16166612 - Schizophr Bull. 2006 Jan;32(1):179-94 – reference: 15846824 - Hum Brain Mapp. 2005 May;25(1):22-34 – reference: 15337650 - Am J Psychiatry. 2004 Sep;161(9):1603-11 – reference: 15993895 - J Psychiatr Res. 2007 Jan-Feb;41(1-2):49-56 – reference: 18556667 - Schizophr Bull. 2009 Nov;35(6):1142-62 – reference: 19666074 - Prog Neuropsychopharmacol Biol Psychiatry. 2009 Nov 13;33(8):1464-73 – reference: 19541369 - J Affect Disord. 2010 Mar;121(3):220-30 – reference: 18219617 - Hum Brain Mapp. 2009 Feb;30(2):625-37 – reference: 18854323 - Brain. 2008 Dec;131(Pt 12):3169-77 – reference: 18488025 - Nat Neurosci. 2008 Jun;11(6):637-9 – reference: 16330585 - Am J Psychiatry. 2005 Dec;162(12):2233-45 – reference: 10813800 - Am J Med Genet. 2000 Spring;97(1):12-7 – reference: 19777578 - Hum Brain Mapp. 2010 Mar;31(3):424-37 – reference: 19042912 - Schizophr Bull. 2009 Jan;35(1):19-31 – reference: 17151161 - Am J Psychiatry. 2006 Dec;163(12):2103-10 – reference: 7476241 - Mem Cognit. 1995 Sep;23(5):551-9 – reference: 10893535 - Magn Reson Med. 2000 Jul;44(1):162-7 – reference: 17716091 - Annu Rev Clin Psychol. 2005;1:321-53 – reference: 18824195 - Neurosci Biobehav Rev. 2009 Mar;33(3):279-96 – reference: 12668349 - Am J Psychiatry. 2003 Apr;160(4):636-45 – reference: 12880804 - Neuroimage. 2003 Jul;19(3):751-63 – reference: 9558644 - Neuroimage. 1998 Feb;7(2):119-32 – reference: 9613621 - Schizophr Bull. 1998;24(2):203-18 – reference: 10769304 - J Cogn Neurosci. 2000 Jan;12(1):1-47 – reference: 3947207 - Arch Gen Psychiatry. 1986 Feb;43(2):114-24 – reference: 11209064 - Proc Natl Acad Sci U S A. 2001 Jan 16;98(2):676-82 – reference: 17493957 - Schizophr Bull. 2007 Jul;33(4):994-1003 – reference: 10719152 - Brain Res Brain Res Rev. 2000 Mar;31(2-3):251-69 – reference: 14638592 - Am J Psychiatry. 2003 Dec;160(12):2209-15 – reference: 16343785 - Neuroscience. 2006 Apr 28;139(1):277-89 – reference: 17628434 - Schizophr Res. 2007 Dec;97(1-3):194-205 – reference: 9137127 - Am J Psychiatry. 1997 May;154(5):682-4 |
| SSID | ssj0014962 |
| Score | 2.399456 |
| Snippet | Abnormal connectivity of the anticorrelated intrinsic networks, the task-negative network (TNN), and the task-positive network (TPN) is implicated in... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 285 |
| SubjectTerms | Adult Case-Control Studies Female Frontal Lobe - pathology Frontal Lobe - physiopathology Functional Neuroimaging Gyrus Cinguli - pathology Gyrus Cinguli - physiopathology Humans Magnetic Resonance Imaging Male Neural Pathways - pathology Neural Pathways - physiopathology Parietal Lobe - pathology Parietal Lobe - physiopathology Prefrontal Cortex - pathology Prefrontal Cortex - physiopathology Schizophrenia - pathology Schizophrenia - physiopathology Siblings Task Performance and Analysis Temporal Lobe - pathology Temporal Lobe - physiopathology |
| Title | Schizophrenic patients and their unaffected siblings share increased resting-state connectivity in the task-negative network but not its anticorrelated task-positive network |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/20595202 https://www.proquest.com/docview/923188852 |
| Volume | 38 |
| WOSCitedRecordID | wos000300731100016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwELWgy6GXtggoFFr5wNXa4Nib9QlVCMShXSF1D3tb-WMMqyLvgrP8q_5HZpzwcak4cIkiOY4tx3beeN7MY-zYWrRutAGhdDRCAXhhdFUJkLoOdLZfNyVQ-FczmYxnM3PVc3NyT6t82hPLRh2Wns7IhwRE0FrT8nR1J0g0ipyrvYLGJhvUiGRoUjezFyeCMkVPFDG3FpR2vE-xiTb8EC1Ht74dZndXEdXvf-Cy_GQuPr-ze1_Ypx5d8p_ddNhmG5B22L8_r4h1nveZVDO3KfDiJ-DrZAutAwLHFUIB6pnnG3sPfJEIVWYsIA0PLBAlAol74sf4TnkCH6L38NbmvyLBdUklzlPHL-du3fK0bPmitIj9IjmQW0ttlQoda-ylwi6bXpxPzy5Fr9IgvFKmFdqNjI-IEk6CgSZANK4ahcYa7akAvKpDNMpKPw6IltxIRachgAxOyajkHvuQlgn2GY8Kom4kBXdrJa0zKvigYhhDbQDvDhh_Gvs5LgLybNgEy3WeP4_-Afvafb_5qkvWMZeIH7Ws5Le3Kx-yj9i47BhmR2wQcQOA72zLP7SLfP-jTC68Tq5-PwIX_eKv |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Schizophrenic+patients+and+their+unaffected+siblings+share+increased+resting-state+connectivity+in+the+task-negative+network+but+not+its+anticorrelated+task-positive+network&rft.jtitle=Schizophrenia+bulletin&rft.au=Liu%2C+Haihong&rft.au=Kaneko%2C+Yoshio&rft.au=Ouyang%2C+Xuan&rft.au=Li%2C+Li&rft.date=2012-03-01&rft.issn=1745-1701&rft.eissn=1745-1701&rft.volume=38&rft.issue=2&rft.spage=285&rft_id=info:doi/10.1093%2Fschbul%2Fsbq074&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1745-1701&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1745-1701&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1745-1701&client=summon |