The Quaternion LMS Algorithm for Adaptive Filtering of Hypercomplex Processes

The quaternion least mean square (QLMS) algorithm is introduced for adaptive filtering of three- and four-dimensional processes, such as those observed in atmospheric modeling (wind, vector fields). These processes exhibit complex nonlinear dynamics and coupling between the dimensions, which make th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing Jg. 57; H. 4; S. 1316 - 1327
Hauptverfasser: Took, C.C., Mandic, D.P.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York, NY IEEE 01.04.2009
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1053-587X, 1941-0476
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The quaternion least mean square (QLMS) algorithm is introduced for adaptive filtering of three- and four-dimensional processes, such as those observed in atmospheric modeling (wind, vector fields). These processes exhibit complex nonlinear dynamics and coupling between the dimensions, which make their component-wise processing by multiple univariate LMS, bivariate complex LMS (CLMS), or multichannel LMS (MLMS) algorithms inadequate. The QLMS accounts for these problems naturally, as it is derived directly in the quaternion domain. The analysis shows that QLMS operates inherently based on the so called ldquoaugmentedrdquo statistics, that is, both the covariance E { xx H } and pseudocovariance E { xx T } of the tap input vector x are taken into account. In addition, the operation in the quaternion domain facilitates fusion of heterogeneous data sources, for instance, the three vector dimensions of the wind field and air temperature. Simulations on both benchmark and real world data support the approach.
AbstractList The quaternion least mean square (QLMS) algorithm is introduced for adaptive filtering of three- and four-dimensional processes, such as those observed in atmospheric modeling (wind, vector fields). These processes exhibit complex nonlinear dynamics and coupling between the dimensions, which make their component-wise processing by multiple univariate LMS, bivariate complex LMS (CLMS), or multichannel LMS (MLMS) algorithms inadequate. The QLMS accounts for these problems naturally, as it is derived directly in the quaternion domain. The analysis shows that QLMS operates inherently based on the so called "augmented" statistics, that is, both the covariance E{ xx super(H)} and pseudocovariance E{ xx super(T)} of the tap input vector x are taken into account. In addition, the operation in the quaternion domain facilitates fusion of heterogeneous data sources, for instance, the three vector dimensions of the wind field and air temperature. Simulations on both benchmark and real world data support the approach.
The quaternion least mean square (QLMS) algorithm is introduced for adaptive filtering of three- and four-dimensional processes, such as those observed in atmospheric modeling (wind, vector fields). These processes exhibit complex nonlinear dynamics and coupling between the dimensions, which make their component-wise processing by multiple univariate LMS, bivariate complex LMS (CLMS), or multichannel LMS (MLMS) algorithms inadequate. The QLMS accounts for these problems naturally, as it is derived directly in the quaternion domain. The analysis shows that QLMS operates inherently based on the so called "augmented" statistics, that is, both the covariance (E){ xx (H)} and pseudocovariance (E){ xx (T)} of the tap input vector x are taken into account. In addition, the operation in the quaternion domain facilitates fusion of heterogeneous data sources, for instance, the three vector dimensions of the wind field and air temperature. Simulations on both benchmark and real world data support the approach.
The quaternion least mean square (QLMS) algorithm is introduced for adaptive filtering of three- and four-dimensional processes, such as those observed in atmospheric modeling (wind, vector fields). These processes exhibit complex nonlinear dynamics and coupling between the dimensions, which make their component-wise processing by multiple univariate LMS, bivariate complex LMS (CLMS), or multichannel LMS (MLMS) algorithms inadequate. The QLMS accounts for these problems naturally, as it is derived directly in the quaternion domain. The analysis shows that QLMS operates inherently based on the so called ldquoaugmentedrdquo statistics, that is, both the covariance E { xx H } and pseudocovariance E { xx T } of the tap input vector x are taken into account. In addition, the operation in the quaternion domain facilitates fusion of heterogeneous data sources, for instance, the three vector dimensions of the wind field and air temperature. Simulations on both benchmark and real world data support the approach.
Author Took, C.C.
Mandic, D.P.
Author_xml – sequence: 1
  givenname: C.C.
  surname: Took
  fullname: Took, C.C.
  organization: Dept. of Electr. & Electron. Eng., Imperial Coll. London, London
– sequence: 2
  givenname: D.P.
  surname: Mandic
  fullname: Mandic, D.P.
  organization: Dept. of Electr. & Electron. Eng., Imperial Coll. London, London
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21398758$$DView record in Pascal Francis
BookMark eNp9kc9LHDEYhkNRqNrehV5Coe1p7ZfJj0mOi2gtrGhxC95CNvNFI7OTaTJb6n_fLLt48OAlyeF5v_cLzzE5GNKAhJwyOGMMzPfl3e1ZA6DrwUABvCNHzAg2A9Gqg_oGyWdSt_fvyXEpTwBMCKOOyPXyEemvjZswDzENdHF9R-f9Q8pxelzTkDKdd26c4l-kl7GvVBweaAr06nnE7NN67PEfvc3JYylYPpDD4PqCH_f3Cfl9ebE8v5otbn78PJ8vZr62TnUPHoTRHFuvuPYdd1rCqvMcV4Kh7roOgoAgUTcs8MCFl1K5lnODK83lip-Qb7u5Y05_Nlgmu47FY9-7AdOmWK0N16phupJf3yS5MIIrLSr4-RX4lDZ5qL-wdZJqQApToS97yBXv-pDd4GOxY45rl59tw7jRrdy2wo7zOZWSMbwgDOxWl6267FaX3euqEfUq4uPkpupkyi72bwU_7YIREV96hDKqKuf_AVHOoqU
CODEN ITPRED
CitedBy_id crossref_primary_10_1109_TSP_2010_2048323
crossref_primary_10_3390_math11081869
crossref_primary_10_1002_asjc_2485
crossref_primary_10_1002_rnc_5413
crossref_primary_10_1016_j_laa_2018_05_031
crossref_primary_10_1007_s11760_025_04509_6
crossref_primary_10_1016_j_dsp_2021_103357
crossref_primary_10_1109_TSP_2011_2138701
crossref_primary_10_1016_j_chaos_2023_114263
crossref_primary_10_1016_j_sigpro_2020_107810
crossref_primary_10_1109_TIT_2010_2048440
crossref_primary_10_1016_j_neunet_2019_01_014
crossref_primary_10_1109_ACCESS_2018_2852323
crossref_primary_10_1155_2019_7939238
crossref_primary_10_1007_s13324_022_00705_6
crossref_primary_10_1016_j_isatra_2021_07_029
crossref_primary_10_3390_sym13101825
crossref_primary_10_1016_j_sigpro_2018_02_018
crossref_primary_10_1016_j_amc_2015_09_066
crossref_primary_10_1007_s00006_017_0782_2
crossref_primary_10_1016_j_dsp_2022_103580
crossref_primary_10_1016_j_sigpro_2010_02_003
crossref_primary_10_1109_TIP_2019_2947775
crossref_primary_10_1016_j_sigpro_2021_108233
crossref_primary_10_1109_TASE_2020_3041427
crossref_primary_10_1002_mma_2660
crossref_primary_10_1007_s40995_018_0534_8
crossref_primary_10_1109_TII_2023_3327584
crossref_primary_10_1002_mma_6463
crossref_primary_10_1016_j_knosys_2019_105295
crossref_primary_10_1109_TSP_2019_2897963
crossref_primary_10_1016_j_sigpro_2012_12_019
crossref_primary_10_1109_ACCESS_2020_2994230
crossref_primary_10_1016_j_neucom_2020_02_053
crossref_primary_10_1109_TCSII_2024_3359770
crossref_primary_10_1016_j_sigpro_2010_06_024
crossref_primary_10_1007_s11063_021_10657_w
crossref_primary_10_1049_iet_spr_2017_0340
crossref_primary_10_1109_JSEN_2019_2954054
crossref_primary_10_1007_s10915_025_02826_z
crossref_primary_10_1155_2014_942923
crossref_primary_10_1007_s40995_017_0472_x
crossref_primary_10_1016_j_neucom_2025_129462
crossref_primary_10_1002_we_1682
crossref_primary_10_1051_fopen_2019021
crossref_primary_10_1109_TSP_2019_2897967
crossref_primary_10_1007_s12559_023_10186_9
crossref_primary_10_1016_j_ijleo_2022_170213
crossref_primary_10_1016_j_dsp_2025_104987
crossref_primary_10_3390_sym15030592
crossref_primary_10_1109_TNNLS_2015_2440473
crossref_primary_10_1109_TSP_2010_2101065
crossref_primary_10_1109_LSP_2016_2558461
crossref_primary_10_1016_j_aml_2011_04_038
crossref_primary_10_1109_TSP_2010_2101067
crossref_primary_10_1002_mana_202200475
crossref_primary_10_1016_j_sigpro_2019_05_014
crossref_primary_10_1016_j_neunet_2021_11_023
crossref_primary_10_1016_j_sigpro_2024_109738
crossref_primary_10_1109_TSMC_2019_2931091
crossref_primary_10_1007_s11760_024_03561_y
crossref_primary_10_1002_mma_7273
crossref_primary_10_1109_MSP_2023_3278071
crossref_primary_10_3390_fractalfract7050356
crossref_primary_10_1007_s00220_013_1799_6
crossref_primary_10_1016_j_renene_2010_12_013
crossref_primary_10_1109_LSP_2024_3459640
crossref_primary_10_1109_ACCESS_2019_2960597
crossref_primary_10_1109_ACCESS_2021_3097756
crossref_primary_10_1016_j_procs_2015_09_152
crossref_primary_10_1080_03081087_2019_1614517
crossref_primary_10_1109_LSP_2014_2299066
crossref_primary_10_1002_tee_22394
crossref_primary_10_1007_s11071_022_07425_3
crossref_primary_10_1109_COMST_2020_2989626
crossref_primary_10_1109_ACCESS_2019_2944666
crossref_primary_10_1016_j_dsp_2021_103383
crossref_primary_10_1109_LSP_2015_2487824
crossref_primary_10_1109_TCSII_2021_3125801
crossref_primary_10_1016_j_knosys_2023_110903
crossref_primary_10_1016_j_sigpro_2016_10_007
crossref_primary_10_1109_TCSII_2016_2555942
crossref_primary_10_1109_TSP_2009_2033730
crossref_primary_10_1007_s11075_023_01609_7
crossref_primary_10_1088_1742_6596_2868_1_012034
crossref_primary_10_1002_mma_4148
crossref_primary_10_1109_TCSII_2024_3364503
crossref_primary_10_1002_mma_10245
crossref_primary_10_1109_TSP_2019_2955831
crossref_primary_10_1007_s10473_023_0325_y
crossref_primary_10_3390_math11133002
crossref_primary_10_1016_j_neucom_2019_10_059
crossref_primary_10_1109_TSP_2020_3029959
crossref_primary_10_1016_j_ijleo_2023_171029
crossref_primary_10_1007_s00006_019_0955_2
crossref_primary_10_1016_j_neucom_2023_126532
crossref_primary_10_1007_s11063_023_11225_0
crossref_primary_10_1109_ACCESS_2018_2848202
crossref_primary_10_1109_ACCESS_2019_2925893
crossref_primary_10_1109_TSP_2015_2399865
crossref_primary_10_1109_MSP_2024_3389496
crossref_primary_10_1016_j_isatra_2023_02_013
crossref_primary_10_1016_j_amc_2013_07_025
crossref_primary_10_1016_j_sigpro_2024_109519
crossref_primary_10_1007_s00034_018_0760_5
crossref_primary_10_1049_iet_spr_2016_0139
crossref_primary_10_1109_TNNLS_2017_2755697
crossref_primary_10_1109_TSP_2011_2178405
crossref_primary_10_1002_mma_9670
crossref_primary_10_1016_j_sigpro_2020_107619
crossref_primary_10_1109_TAES_2013_6494413
crossref_primary_10_1109_TSP_2019_2916028
crossref_primary_10_1016_j_amc_2017_09_033
crossref_primary_10_1016_j_ins_2017_09_057
crossref_primary_10_1029_2019RS006796
crossref_primary_10_1080_03081087_2012_703192
crossref_primary_10_1016_j_eswa_2016_11_006
crossref_primary_10_1016_j_amc_2016_11_002
crossref_primary_10_1007_s10915_022_02058_5
crossref_primary_10_1007_s11063_017_9716_1
crossref_primary_10_1007_s11045_015_0325_8
crossref_primary_10_1007_s11063_021_10435_8
crossref_primary_10_1155_2019_9072690
crossref_primary_10_1109_TSP_2019_2922151
crossref_primary_10_1007_s40995_024_01758_x
crossref_primary_10_1109_TNNLS_2013_2248165
crossref_primary_10_1007_s00034_022_02241_x
crossref_primary_10_1109_TNN_2011_2157358
crossref_primary_10_1080_21642583_2025_2481941
crossref_primary_10_1016_j_sigpro_2022_108815
crossref_primary_10_1016_j_amc_2020_125680
crossref_primary_10_1016_j_sigpro_2021_108276
crossref_primary_10_1007_s11045_013_0238_3
crossref_primary_10_1016_j_neunet_2023_02_030
crossref_primary_10_1016_j_sigpro_2024_109863
crossref_primary_10_1080_00207160_2020_1821001
crossref_primary_10_1080_03081087_2013_839667
crossref_primary_10_1016_j_ijleo_2022_169156
crossref_primary_10_1109_TCSII_2021_3069390
crossref_primary_10_1109_TNNLS_2015_2388782
crossref_primary_10_1109_TSP_2010_2047719
crossref_primary_10_1109_TNNLS_2014_2383912
crossref_primary_10_1109_TIE_2019_2891468
crossref_primary_10_1016_j_sigpro_2016_11_021
crossref_primary_10_1098_rsos_150255
crossref_primary_10_1109_ACCESS_2019_2948615
crossref_primary_10_1007_s00034_024_02863_3
crossref_primary_10_1049_iet_spr_2016_0111
crossref_primary_10_1007_s12559_022_10057_9
crossref_primary_10_1109_LSP_2010_2091126
crossref_primary_10_1016_j_neucom_2019_09_051
crossref_primary_10_1016_j_jfranklin_2017_06_004
crossref_primary_10_1080_03081087_2015_1037302
crossref_primary_10_1137_20M133751X
crossref_primary_10_3390_math12152341
crossref_primary_10_1109_TSP_2012_2226170
crossref_primary_10_1109_TSP_2019_2944757
crossref_primary_10_1002_mma_11142
crossref_primary_10_1109_TSP_2017_2787102
crossref_primary_10_1111_sapm_12344
crossref_primary_10_3390_fractalfract8030154
crossref_primary_10_1109_TCSII_2021_3056452
crossref_primary_10_1002_mma_9126
crossref_primary_10_3390_e23070856
crossref_primary_10_1109_MSP_2024_3384179
crossref_primary_10_1007_s11571_019_09545_w
crossref_primary_10_1109_TSP_2023_3300628
crossref_primary_10_1155_2014_291249
crossref_primary_10_1109_TBME_2016_2530564
crossref_primary_10_1016_j_sigpro_2013_02_007
crossref_primary_10_1109_TSP_2019_2925604
crossref_primary_10_1109_TCSI_2024_3505419
crossref_primary_10_1109_TIM_2025_3533661
crossref_primary_10_1016_j_automatica_2017_09_008
crossref_primary_10_3390_sym17030463
crossref_primary_10_1016_j_amc_2015_05_104
crossref_primary_10_3390_sym14030550
crossref_primary_10_1016_j_sigpro_2021_108333
crossref_primary_10_1109_JSEN_2024_3405665
crossref_primary_10_1016_j_neucom_2024_127289
crossref_primary_10_1109_LSP_2017_2734652
crossref_primary_10_1186_s13662_020_02560_w
crossref_primary_10_1007_s41478_023_00585_4
crossref_primary_10_1109_TNNLS_2018_2829526
crossref_primary_10_1002_asjc_3743
crossref_primary_10_1177_14759217221122331
crossref_primary_10_1109_TMECH_2022_3210765
crossref_primary_10_1016_j_neunet_2023_05_045
crossref_primary_10_1016_j_sigpro_2016_11_002
crossref_primary_10_1109_TIM_2022_3218546
crossref_primary_10_1016_j_neunet_2009_10_006
crossref_primary_10_1109_ACCESS_2019_2922343
Cites_doi 10.1109/PROC.1975.9807
10.1016/j.neunet.2007.09.015
10.1109/TSP.2007.910477
10.1109/TSP.2007.906773
10.1109/78.558478
10.1109/TSP.2002.808085
10.1109/78.960432
10.1109/ICHR.2005.1573546
10.1109/TSP.2005.849170
10.1109/TSP.2007.911278
10.1002/0470846127
10.1162/neco.2007.19.4.1039
10.1109/78.403373
10.1016/0024-3795(95)00543-9
10.1109/78.348134
10.1016/j.sigpro.2004.04.001
10.1109/ICPR.1998.711172
10.1109/78.340781
10.1109/78.218137
10.1007/978-94-011-5768-1
10.1016/j.jmgm.2006.04.002
10.1016/j.renene.2008.03.022
10.1007/b117685
10.1109/ICASSP.1998.681800
10.1109/78.554305
10.1007/978-0-387-74367-7
10.1109/TSP.2006.870630
10.1016/S0024-3795(00)00246-9
10.1109/ISSPA.2001.949760
10.1137/S0040585X97976696
10.1016/j.cpc.2006.12.005
10.1109/83.760310
10.1109/TNN.2007.911747
10.4271/2004-01-2179
10.1016/j.renene.2005.07.006
ContentType Journal Article
Copyright 2009 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009
Copyright_xml – notice: 2009 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1109/TSP.2008.2010600
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore Digital Library
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database
Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
Statistics
EISSN 1941-0476
EndPage 1327
ExternalDocumentID 2324530851
21398758
10_1109_TSP_2008_2010600
4696053
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
53G
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AJQPL
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
IQODW
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c449t-583f4983e7c638cd3a850bdc3eb41e8ddd0f40f5e821f3f34c556a7339eb835b3
IEDL.DBID RIE
ISICitedReferencesCount 270
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000264247400008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1053-587X
IngestDate Sun Sep 28 06:24:22 EDT 2025
Sun Sep 28 12:23:47 EDT 2025
Mon Jun 30 10:18:10 EDT 2025
Mon Jul 21 09:15:40 EDT 2025
Tue Nov 18 21:45:00 EST 2025
Sat Nov 29 04:10:13 EST 2025
Tue Aug 26 16:48:05 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Quaternion
Adaptive filtering
Adaptive filter
Algorithm
Modeling
data fusion via vector spaces
Three dimensional model
wind modeling
Covariance
Vector space
Multistep method
Simulation
multidimensional adaptive filters
quaternion signal processing
Information processing
Signal processing
Data fusion
Adaptive multistep ahead prediction
Multiple channel
Vector field
Least mean squares methods
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c449t-583f4983e7c638cd3a850bdc3eb41e8ddd0f40f5e821f3f34c556a7339eb835b3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
content type line 23
PQID 862620549
PQPubID 23500
PageCount 12
ParticipantIDs pascalfrancis_primary_21398758
proquest_miscellaneous_889386218
ieee_primary_4696053
crossref_primary_10_1109_TSP_2008_2010600
proquest_miscellaneous_34943684
proquest_journals_862620549
crossref_citationtrail_10_1109_TSP_2008_2010600
PublicationCentury 2000
PublicationDate 2009-04-01
PublicationDateYYYYMMDD 2009-04-01
PublicationDate_xml – month: 04
  year: 2009
  text: 2009-04-01
  day: 01
PublicationDecade 2000
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: New York
PublicationTitle IEEE transactions on signal processing
PublicationTitleAbbrev TSP
PublicationYear 2009
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref37
ref15
bas (ref21) 2003; 3
ref36
ref14
ref30
ref11
ref32
ref10
ref17
ref38
ref16
ref19
strogatz (ref7) 2001
ref18
javidi (ref28) 2008
sayed (ref1) 2003
haykin (ref43) 2001
ref46
ref24
ref45
ref23
ref26
ref47
ref25
ref20
ref42
ref22
douglas (ref41) 2008
ref44
amblard (ref39) 2004
hamilton (ref12) 1899
ref27
ref29
ref8
ref9
mandic (ref33) 2008
ref4
ref6
ref5
kantor (ref31) 1989
ref40
farhang-boroujeny (ref2) 1999
vaseghi (ref3) 2002
sangwine (ref48) 2005
References_xml – ident: ref9
  doi: 10.1109/PROC.1975.9807
– year: 2008
  ident: ref33
  publication-title: Complex Valued Nonlinear Adaptive Filters A Neural Network Approach
– year: 1999
  ident: ref2
  publication-title: Adaptive Filters Theory and Applications
– year: 2008
  ident: ref41
  article-title: Mean and mean-square analysis of the complex LMS algorithm for non-circular Gaussian signals
  publication-title: IEEE Digital Signal Processing and Signal Processing Education Workshop
– ident: ref40
  doi: 10.1016/j.neunet.2007.09.015
– start-page: 54
  year: 2008
  ident: ref28
  article-title: The augmented complex least mean square algorithm with application to adaptive prediction problems
  publication-title: IAPR Workshop Cognitive Information Processing
– ident: ref22
  doi: 10.1109/TSP.2007.910477
– ident: ref42
  doi: 10.1109/TSP.2007.906773
– ident: ref5
  doi: 10.1109/78.558478
– year: 2001
  ident: ref43
  publication-title: Adaptive Filter Theory
– start-page: 23
  year: 2004
  ident: ref39
  article-title: On properness of quaternion valued random variables
  publication-title: Proc IMA Conf Mathematics in Signal Processing
– ident: ref11
  doi: 10.1109/TSP.2002.808085
– ident: ref19
  doi: 10.1109/78.960432
– year: 1899
  ident: ref12
  publication-title: Elements of Quaternions
– ident: ref15
  doi: 10.1109/ICHR.2005.1573546
– year: 2003
  ident: ref1
  publication-title: Fundamentals of Adaptive Filtering
– ident: ref6
  doi: 10.1109/TSP.2005.849170
– ident: ref35
  doi: 10.1109/TSP.2007.911278
– ident: ref46
  doi: 10.1002/0470846127
– ident: ref10
  doi: 10.1162/neco.2007.19.4.1039
– ident: ref27
  doi: 10.1109/78.403373
– ident: ref13
  doi: 10.1016/0024-3795(95)00543-9
– ident: ref45
  doi: 10.1109/78.348134
– ident: ref23
  doi: 10.1016/j.sigpro.2004.04.001
– year: 1989
  ident: ref31
  publication-title: Hypercomplex Numbers an Elementary Introduction to Algebras
– ident: ref26
  doi: 10.1109/ICPR.1998.711172
– ident: ref36
  doi: 10.1109/78.340781
– ident: ref4
  doi: 10.1109/78.218137
– ident: ref32
  doi: 10.1007/978-94-011-5768-1
– volume: 3
  start-page: iii
  year: 2003
  ident: ref21
  article-title: Color image watermarking using quaternion Fourier transform
  publication-title: Proc IEEE Int Conf Acoustics Speech Signal Processing
– ident: ref16
  doi: 10.1016/j.jmgm.2006.04.002
– ident: ref29
  doi: 10.1016/j.renene.2008.03.022
– year: 2001
  ident: ref7
  publication-title: Nonlinear Dynamics and Chaos With Applications to Physics Biology Chemistry and Engineering (Studies in Nonlinearity)
– ident: ref30
  doi: 10.1007/b117685
– ident: ref18
  doi: 10.1109/ICASSP.1998.681800
– ident: ref37
  doi: 10.1109/78.554305
– ident: ref47
  doi: 10.1007/978-0-387-74367-7
– ident: ref24
  doi: 10.1109/TSP.2006.870630
– ident: ref44
  doi: 10.1016/S0024-3795(00)00246-9
– ident: ref20
  doi: 10.1109/ISSPA.2001.949760
– ident: ref38
  doi: 10.1137/S0040585X97976696
– year: 2002
  ident: ref3
  publication-title: Advanced Digital Signal Processing and Noise Reduction
– ident: ref25
  doi: 10.1016/j.cpc.2006.12.005
– ident: ref17
  doi: 10.1109/83.760310
– year: 2005
  ident: ref48
  publication-title: Quaternion Toolbox for Matlab
– ident: ref34
  doi: 10.1109/TNN.2007.911747
– ident: ref14
  doi: 10.4271/2004-01-2179
– ident: ref8
  doi: 10.1016/j.renene.2005.07.006
SSID ssj0014496
Score 2.4567535
Snippet The quaternion least mean square (QLMS) algorithm is introduced for adaptive filtering of three- and four-dimensional processes, such as those observed in...
SourceID proquest
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1316
SubjectTerms Adaptive filters
Adaptive multistep ahead prediction
Adaptive signal processing
Algorithms
Applied sciences
Benchmarking
data fusion via vector spaces
Detection, estimation, filtering, equalization, prediction
Exact sciences and technology
Filtering algorithms
Information theory
Information, signal and communications theory
Least mean squares
Least squares approximation
Mathematical analysis
Miscellaneous
multidimensional adaptive filters
Multidimensional signal processing
quaternion signal processing
Quaternions
Radar signal processing
Signal and communications theory
Signal processing
Signal processing algorithms
Signal, noise
Sonar
Statistics
Telecommunications and information theory
Vectors (mathematics)
wind modeling
Title The Quaternion LMS Algorithm for Adaptive Filtering of Hypercomplex Processes
URI https://ieeexplore.ieee.org/document/4696053
https://www.proquest.com/docview/862620549
https://www.proquest.com/docview/34943684
https://www.proquest.com/docview/889386218
Volume 57
WOSCitedRecordID wos000264247400008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014496
  issn: 1053-587X
  databaseCode: RIE
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4B6qE90AdUpLTgQy9IpOvETuIcV1VXHABRQdHeotge05XoBm12q_78jp1sBIJW4hbJdmTNw_7G8wL4nNrEciXrWLg0i6XmOlZI6u4M5rqQKHXI474-Lc7P1XRaXmzA8ZALg4gh-Ay_-M_gy7eNWfmnshGZcoS-xSZsFkXR5WoNHgMpQy8uggsizlQxXbskeTm6urzogia95zf3uWz3rqDQU8VHRNYtEcV13SweHczhtpm8ft4-38B2jyrZuBODt7CB83fw6l6twR04I4Fg31e1fwAkXrDTs0s2vr1pFrPlz1-MoCsb2_rOH35sMvMudFrFGsdOyFBdhMBz_MP6tAJsd-HH5NvV15O476UQG6LM0idXOVkqgYUhjTNW1Crj2hqBWiaorLXcSe4yVGnihBPSZFleF0KUqAmkafEetubNHPeAZdZZR0sl11qKXGpLkMAhGaKpM1rqCEZr8lamLzTu-13cVsHg4GVFDOnaX_YMieBoWHHXFdn4z9wdT_BhXk_rCA4ecHAYTwnikk2mIthfs7Tq1bStvDmXEmgtIzgcRkm_vNOknmOzaitfvkfkSkbA_jFDEeSjHyXqw9Nb24eXaxcUTz7C1nKxwk_wwvxeztrFQZDiv1AJ8Kk
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFD4aA4nxMC5jImxsfuAFidAkdhLnsZpWFdFWQyuob1FsH0Ol0UxNi_j5HDtpNMRF4i2S7cg6F_s7PjeA14mJTSRFFXKbpKFQkQolkrpbjZnKBQrl87g_T_LZTC4WxdUevO1zYRDRB5_hO_fpffmm1lv3VDYgU47QN78H91MhkrjN1up9BkL4blwEGHiYynyxc0pGxWB-fdWGTTrfb-ay2e5cQr6riouJrBoii237Wfx2NPv7ZvT4_3b6BA47XMmGrSA8hT1cPYNHd6oNHsGURIJ93FbuCZC4wSbTaza8-VKvl5uv3xiBVzY01a07_tho6ZzotIrVlo3JVF370HP8wbrEAmyew6fR5fxiHHbdFEJNlNm49CorCskx16Rz2vBKppEymqMSMUpjTGRFZFOUSWy55UKnaVblnBeoCKYpfgz7q3qFL4ClxhpLS0WklOCZUIZAgUUyRROrlVABDHbkLXVXatx1vLgpvckRFSUxpG2A2TEkgDf9itu2zMY_5h45gvfzOloHcPYLB_vxhEAuWWUygJMdS8tOUZvSGXQJwdYigPN-lDTMuU2qFdbbpnQFfHgmRQDsLzMkgT76USxf_nlr5_BwPJ9Oysn72YcTONg5pKL4FPY36y2-ggf6-2bZrM-8RP8E9P_z8A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Quaternion+LMS+Algorithm+for+Adaptive+Filtering+of+Hypercomplex+Processes&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Took%2C+C.C.&rft.au=Mandic%2C+D.P.&rft.date=2009-04-01&rft.issn=1053-587X&rft.eissn=1941-0476&rft.volume=57&rft.issue=4&rft.spage=1316&rft.epage=1327&rft_id=info:doi/10.1109%2FTSP.2008.2010600&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSP_2008_2010600
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon