The Quaternion LMS Algorithm for Adaptive Filtering of Hypercomplex Processes
The quaternion least mean square (QLMS) algorithm is introduced for adaptive filtering of three- and four-dimensional processes, such as those observed in atmospheric modeling (wind, vector fields). These processes exhibit complex nonlinear dynamics and coupling between the dimensions, which make th...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on signal processing Jg. 57; H. 4; S. 1316 - 1327 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York, NY
IEEE
01.04.2009
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1053-587X, 1941-0476 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The quaternion least mean square (QLMS) algorithm is introduced for adaptive filtering of three- and four-dimensional processes, such as those observed in atmospheric modeling (wind, vector fields). These processes exhibit complex nonlinear dynamics and coupling between the dimensions, which make their component-wise processing by multiple univariate LMS, bivariate complex LMS (CLMS), or multichannel LMS (MLMS) algorithms inadequate. The QLMS accounts for these problems naturally, as it is derived directly in the quaternion domain. The analysis shows that QLMS operates inherently based on the so called ldquoaugmentedrdquo statistics, that is, both the covariance E { xx H } and pseudocovariance E { xx T } of the tap input vector x are taken into account. In addition, the operation in the quaternion domain facilitates fusion of heterogeneous data sources, for instance, the three vector dimensions of the wind field and air temperature. Simulations on both benchmark and real world data support the approach. |
|---|---|
| AbstractList | The quaternion least mean square (QLMS) algorithm is introduced for adaptive filtering of three- and four-dimensional processes, such as those observed in atmospheric modeling (wind, vector fields). These processes exhibit complex nonlinear dynamics and coupling between the dimensions, which make their component-wise processing by multiple univariate LMS, bivariate complex LMS (CLMS), or multichannel LMS (MLMS) algorithms inadequate. The QLMS accounts for these problems naturally, as it is derived directly in the quaternion domain. The analysis shows that QLMS operates inherently based on the so called "augmented" statistics, that is, both the covariance E{ xx super(H)} and pseudocovariance E{ xx super(T)} of the tap input vector x are taken into account. In addition, the operation in the quaternion domain facilitates fusion of heterogeneous data sources, for instance, the three vector dimensions of the wind field and air temperature. Simulations on both benchmark and real world data support the approach. The quaternion least mean square (QLMS) algorithm is introduced for adaptive filtering of three- and four-dimensional processes, such as those observed in atmospheric modeling (wind, vector fields). These processes exhibit complex nonlinear dynamics and coupling between the dimensions, which make their component-wise processing by multiple univariate LMS, bivariate complex LMS (CLMS), or multichannel LMS (MLMS) algorithms inadequate. The QLMS accounts for these problems naturally, as it is derived directly in the quaternion domain. The analysis shows that QLMS operates inherently based on the so called "augmented" statistics, that is, both the covariance (E){ xx (H)} and pseudocovariance (E){ xx (T)} of the tap input vector x are taken into account. In addition, the operation in the quaternion domain facilitates fusion of heterogeneous data sources, for instance, the three vector dimensions of the wind field and air temperature. Simulations on both benchmark and real world data support the approach. The quaternion least mean square (QLMS) algorithm is introduced for adaptive filtering of three- and four-dimensional processes, such as those observed in atmospheric modeling (wind, vector fields). These processes exhibit complex nonlinear dynamics and coupling between the dimensions, which make their component-wise processing by multiple univariate LMS, bivariate complex LMS (CLMS), or multichannel LMS (MLMS) algorithms inadequate. The QLMS accounts for these problems naturally, as it is derived directly in the quaternion domain. The analysis shows that QLMS operates inherently based on the so called ldquoaugmentedrdquo statistics, that is, both the covariance E { xx H } and pseudocovariance E { xx T } of the tap input vector x are taken into account. In addition, the operation in the quaternion domain facilitates fusion of heterogeneous data sources, for instance, the three vector dimensions of the wind field and air temperature. Simulations on both benchmark and real world data support the approach. |
| Author | Took, C.C. Mandic, D.P. |
| Author_xml | – sequence: 1 givenname: C.C. surname: Took fullname: Took, C.C. organization: Dept. of Electr. & Electron. Eng., Imperial Coll. London, London – sequence: 2 givenname: D.P. surname: Mandic fullname: Mandic, D.P. organization: Dept. of Electr. & Electron. Eng., Imperial Coll. London, London |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21398758$$DView record in Pascal Francis |
| BookMark | eNp9kc9LHDEYhkNRqNrehV5Coe1p7ZfJj0mOi2gtrGhxC95CNvNFI7OTaTJb6n_fLLt48OAlyeF5v_cLzzE5GNKAhJwyOGMMzPfl3e1ZA6DrwUABvCNHzAg2A9Gqg_oGyWdSt_fvyXEpTwBMCKOOyPXyEemvjZswDzENdHF9R-f9Q8pxelzTkDKdd26c4l-kl7GvVBweaAr06nnE7NN67PEfvc3JYylYPpDD4PqCH_f3Cfl9ebE8v5otbn78PJ8vZr62TnUPHoTRHFuvuPYdd1rCqvMcV4Kh7roOgoAgUTcs8MCFl1K5lnODK83lip-Qb7u5Y05_Nlgmu47FY9-7AdOmWK0N16phupJf3yS5MIIrLSr4-RX4lDZ5qL-wdZJqQApToS97yBXv-pDd4GOxY45rl59tw7jRrdy2wo7zOZWSMbwgDOxWl6267FaX3euqEfUq4uPkpupkyi72bwU_7YIREV96hDKqKuf_AVHOoqU |
| CODEN | ITPRED |
| CitedBy_id | crossref_primary_10_1109_TSP_2010_2048323 crossref_primary_10_3390_math11081869 crossref_primary_10_1002_asjc_2485 crossref_primary_10_1002_rnc_5413 crossref_primary_10_1016_j_laa_2018_05_031 crossref_primary_10_1007_s11760_025_04509_6 crossref_primary_10_1016_j_dsp_2021_103357 crossref_primary_10_1109_TSP_2011_2138701 crossref_primary_10_1016_j_chaos_2023_114263 crossref_primary_10_1016_j_sigpro_2020_107810 crossref_primary_10_1109_TIT_2010_2048440 crossref_primary_10_1016_j_neunet_2019_01_014 crossref_primary_10_1109_ACCESS_2018_2852323 crossref_primary_10_1155_2019_7939238 crossref_primary_10_1007_s13324_022_00705_6 crossref_primary_10_1016_j_isatra_2021_07_029 crossref_primary_10_3390_sym13101825 crossref_primary_10_1016_j_sigpro_2018_02_018 crossref_primary_10_1016_j_amc_2015_09_066 crossref_primary_10_1007_s00006_017_0782_2 crossref_primary_10_1016_j_dsp_2022_103580 crossref_primary_10_1016_j_sigpro_2010_02_003 crossref_primary_10_1109_TIP_2019_2947775 crossref_primary_10_1016_j_sigpro_2021_108233 crossref_primary_10_1109_TASE_2020_3041427 crossref_primary_10_1002_mma_2660 crossref_primary_10_1007_s40995_018_0534_8 crossref_primary_10_1109_TII_2023_3327584 crossref_primary_10_1002_mma_6463 crossref_primary_10_1016_j_knosys_2019_105295 crossref_primary_10_1109_TSP_2019_2897963 crossref_primary_10_1016_j_sigpro_2012_12_019 crossref_primary_10_1109_ACCESS_2020_2994230 crossref_primary_10_1016_j_neucom_2020_02_053 crossref_primary_10_1109_TCSII_2024_3359770 crossref_primary_10_1016_j_sigpro_2010_06_024 crossref_primary_10_1007_s11063_021_10657_w crossref_primary_10_1049_iet_spr_2017_0340 crossref_primary_10_1109_JSEN_2019_2954054 crossref_primary_10_1007_s10915_025_02826_z crossref_primary_10_1155_2014_942923 crossref_primary_10_1007_s40995_017_0472_x crossref_primary_10_1016_j_neucom_2025_129462 crossref_primary_10_1002_we_1682 crossref_primary_10_1051_fopen_2019021 crossref_primary_10_1109_TSP_2019_2897967 crossref_primary_10_1007_s12559_023_10186_9 crossref_primary_10_1016_j_ijleo_2022_170213 crossref_primary_10_1016_j_dsp_2025_104987 crossref_primary_10_3390_sym15030592 crossref_primary_10_1109_TNNLS_2015_2440473 crossref_primary_10_1109_TSP_2010_2101065 crossref_primary_10_1109_LSP_2016_2558461 crossref_primary_10_1016_j_aml_2011_04_038 crossref_primary_10_1109_TSP_2010_2101067 crossref_primary_10_1002_mana_202200475 crossref_primary_10_1016_j_sigpro_2019_05_014 crossref_primary_10_1016_j_neunet_2021_11_023 crossref_primary_10_1016_j_sigpro_2024_109738 crossref_primary_10_1109_TSMC_2019_2931091 crossref_primary_10_1007_s11760_024_03561_y crossref_primary_10_1002_mma_7273 crossref_primary_10_1109_MSP_2023_3278071 crossref_primary_10_3390_fractalfract7050356 crossref_primary_10_1007_s00220_013_1799_6 crossref_primary_10_1016_j_renene_2010_12_013 crossref_primary_10_1109_LSP_2024_3459640 crossref_primary_10_1109_ACCESS_2019_2960597 crossref_primary_10_1109_ACCESS_2021_3097756 crossref_primary_10_1016_j_procs_2015_09_152 crossref_primary_10_1080_03081087_2019_1614517 crossref_primary_10_1109_LSP_2014_2299066 crossref_primary_10_1002_tee_22394 crossref_primary_10_1007_s11071_022_07425_3 crossref_primary_10_1109_COMST_2020_2989626 crossref_primary_10_1109_ACCESS_2019_2944666 crossref_primary_10_1016_j_dsp_2021_103383 crossref_primary_10_1109_LSP_2015_2487824 crossref_primary_10_1109_TCSII_2021_3125801 crossref_primary_10_1016_j_knosys_2023_110903 crossref_primary_10_1016_j_sigpro_2016_10_007 crossref_primary_10_1109_TCSII_2016_2555942 crossref_primary_10_1109_TSP_2009_2033730 crossref_primary_10_1007_s11075_023_01609_7 crossref_primary_10_1088_1742_6596_2868_1_012034 crossref_primary_10_1002_mma_4148 crossref_primary_10_1109_TCSII_2024_3364503 crossref_primary_10_1002_mma_10245 crossref_primary_10_1109_TSP_2019_2955831 crossref_primary_10_1007_s10473_023_0325_y crossref_primary_10_3390_math11133002 crossref_primary_10_1016_j_neucom_2019_10_059 crossref_primary_10_1109_TSP_2020_3029959 crossref_primary_10_1016_j_ijleo_2023_171029 crossref_primary_10_1007_s00006_019_0955_2 crossref_primary_10_1016_j_neucom_2023_126532 crossref_primary_10_1007_s11063_023_11225_0 crossref_primary_10_1109_ACCESS_2018_2848202 crossref_primary_10_1109_ACCESS_2019_2925893 crossref_primary_10_1109_TSP_2015_2399865 crossref_primary_10_1109_MSP_2024_3389496 crossref_primary_10_1016_j_isatra_2023_02_013 crossref_primary_10_1016_j_amc_2013_07_025 crossref_primary_10_1016_j_sigpro_2024_109519 crossref_primary_10_1007_s00034_018_0760_5 crossref_primary_10_1049_iet_spr_2016_0139 crossref_primary_10_1109_TNNLS_2017_2755697 crossref_primary_10_1109_TSP_2011_2178405 crossref_primary_10_1002_mma_9670 crossref_primary_10_1016_j_sigpro_2020_107619 crossref_primary_10_1109_TAES_2013_6494413 crossref_primary_10_1109_TSP_2019_2916028 crossref_primary_10_1016_j_amc_2017_09_033 crossref_primary_10_1016_j_ins_2017_09_057 crossref_primary_10_1029_2019RS006796 crossref_primary_10_1080_03081087_2012_703192 crossref_primary_10_1016_j_eswa_2016_11_006 crossref_primary_10_1016_j_amc_2016_11_002 crossref_primary_10_1007_s10915_022_02058_5 crossref_primary_10_1007_s11063_017_9716_1 crossref_primary_10_1007_s11045_015_0325_8 crossref_primary_10_1007_s11063_021_10435_8 crossref_primary_10_1155_2019_9072690 crossref_primary_10_1109_TSP_2019_2922151 crossref_primary_10_1007_s40995_024_01758_x crossref_primary_10_1109_TNNLS_2013_2248165 crossref_primary_10_1007_s00034_022_02241_x crossref_primary_10_1109_TNN_2011_2157358 crossref_primary_10_1080_21642583_2025_2481941 crossref_primary_10_1016_j_sigpro_2022_108815 crossref_primary_10_1016_j_amc_2020_125680 crossref_primary_10_1016_j_sigpro_2021_108276 crossref_primary_10_1007_s11045_013_0238_3 crossref_primary_10_1016_j_neunet_2023_02_030 crossref_primary_10_1016_j_sigpro_2024_109863 crossref_primary_10_1080_00207160_2020_1821001 crossref_primary_10_1080_03081087_2013_839667 crossref_primary_10_1016_j_ijleo_2022_169156 crossref_primary_10_1109_TCSII_2021_3069390 crossref_primary_10_1109_TNNLS_2015_2388782 crossref_primary_10_1109_TSP_2010_2047719 crossref_primary_10_1109_TNNLS_2014_2383912 crossref_primary_10_1109_TIE_2019_2891468 crossref_primary_10_1016_j_sigpro_2016_11_021 crossref_primary_10_1098_rsos_150255 crossref_primary_10_1109_ACCESS_2019_2948615 crossref_primary_10_1007_s00034_024_02863_3 crossref_primary_10_1049_iet_spr_2016_0111 crossref_primary_10_1007_s12559_022_10057_9 crossref_primary_10_1109_LSP_2010_2091126 crossref_primary_10_1016_j_neucom_2019_09_051 crossref_primary_10_1016_j_jfranklin_2017_06_004 crossref_primary_10_1080_03081087_2015_1037302 crossref_primary_10_1137_20M133751X crossref_primary_10_3390_math12152341 crossref_primary_10_1109_TSP_2012_2226170 crossref_primary_10_1109_TSP_2019_2944757 crossref_primary_10_1002_mma_11142 crossref_primary_10_1109_TSP_2017_2787102 crossref_primary_10_1111_sapm_12344 crossref_primary_10_3390_fractalfract8030154 crossref_primary_10_1109_TCSII_2021_3056452 crossref_primary_10_1002_mma_9126 crossref_primary_10_3390_e23070856 crossref_primary_10_1109_MSP_2024_3384179 crossref_primary_10_1007_s11571_019_09545_w crossref_primary_10_1109_TSP_2023_3300628 crossref_primary_10_1155_2014_291249 crossref_primary_10_1109_TBME_2016_2530564 crossref_primary_10_1016_j_sigpro_2013_02_007 crossref_primary_10_1109_TSP_2019_2925604 crossref_primary_10_1109_TCSI_2024_3505419 crossref_primary_10_1109_TIM_2025_3533661 crossref_primary_10_1016_j_automatica_2017_09_008 crossref_primary_10_3390_sym17030463 crossref_primary_10_1016_j_amc_2015_05_104 crossref_primary_10_3390_sym14030550 crossref_primary_10_1016_j_sigpro_2021_108333 crossref_primary_10_1109_JSEN_2024_3405665 crossref_primary_10_1016_j_neucom_2024_127289 crossref_primary_10_1109_LSP_2017_2734652 crossref_primary_10_1186_s13662_020_02560_w crossref_primary_10_1007_s41478_023_00585_4 crossref_primary_10_1109_TNNLS_2018_2829526 crossref_primary_10_1002_asjc_3743 crossref_primary_10_1177_14759217221122331 crossref_primary_10_1109_TMECH_2022_3210765 crossref_primary_10_1016_j_neunet_2023_05_045 crossref_primary_10_1016_j_sigpro_2016_11_002 crossref_primary_10_1109_TIM_2022_3218546 crossref_primary_10_1016_j_neunet_2009_10_006 crossref_primary_10_1109_ACCESS_2019_2922343 |
| Cites_doi | 10.1109/PROC.1975.9807 10.1016/j.neunet.2007.09.015 10.1109/TSP.2007.910477 10.1109/TSP.2007.906773 10.1109/78.558478 10.1109/TSP.2002.808085 10.1109/78.960432 10.1109/ICHR.2005.1573546 10.1109/TSP.2005.849170 10.1109/TSP.2007.911278 10.1002/0470846127 10.1162/neco.2007.19.4.1039 10.1109/78.403373 10.1016/0024-3795(95)00543-9 10.1109/78.348134 10.1016/j.sigpro.2004.04.001 10.1109/ICPR.1998.711172 10.1109/78.340781 10.1109/78.218137 10.1007/978-94-011-5768-1 10.1016/j.jmgm.2006.04.002 10.1016/j.renene.2008.03.022 10.1007/b117685 10.1109/ICASSP.1998.681800 10.1109/78.554305 10.1007/978-0-387-74367-7 10.1109/TSP.2006.870630 10.1016/S0024-3795(00)00246-9 10.1109/ISSPA.2001.949760 10.1137/S0040585X97976696 10.1016/j.cpc.2006.12.005 10.1109/83.760310 10.1109/TNN.2007.911747 10.4271/2004-01-2179 10.1016/j.renene.2005.07.006 |
| ContentType | Journal Article |
| Copyright | 2009 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009 |
| Copyright_xml | – notice: 2009 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009 |
| DBID | 97E RIA RIE AAYXX CITATION IQODW 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 |
| DOI | 10.1109/TSP.2008.2010600 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore Digital Library CrossRef Pascal-Francis Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
| DatabaseTitleList | Technology Research Database Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Applied Sciences Statistics |
| EISSN | 1941-0476 |
| EndPage | 1327 |
| ExternalDocumentID | 2324530851 21398758 10_1109_TSP_2008_2010600 4696053 |
| Genre | orig-research |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 53G 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AJQPL AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYXX CITATION IQODW RIG 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 |
| ID | FETCH-LOGICAL-c449t-583f4983e7c638cd3a850bdc3eb41e8ddd0f40f5e821f3f34c556a7339eb835b3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 270 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000264247400008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1053-587X |
| IngestDate | Sun Sep 28 06:24:22 EDT 2025 Sun Sep 28 12:23:47 EDT 2025 Mon Jun 30 10:18:10 EDT 2025 Mon Jul 21 09:15:40 EDT 2025 Tue Nov 18 21:45:00 EST 2025 Sat Nov 29 04:10:13 EST 2025 Tue Aug 26 16:48:05 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Quaternion Adaptive filtering Adaptive filter Algorithm Modeling data fusion via vector spaces Three dimensional model wind modeling Covariance Vector space Multistep method Simulation multidimensional adaptive filters quaternion signal processing Information processing Signal processing Data fusion Adaptive multistep ahead prediction Multiple channel Vector field Least mean squares methods |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c449t-583f4983e7c638cd3a850bdc3eb41e8ddd0f40f5e821f3f34c556a7339eb835b3 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 content type line 23 |
| PQID | 862620549 |
| PQPubID | 23500 |
| PageCount | 12 |
| ParticipantIDs | pascalfrancis_primary_21398758 proquest_miscellaneous_889386218 ieee_primary_4696053 crossref_primary_10_1109_TSP_2008_2010600 proquest_miscellaneous_34943684 proquest_journals_862620549 crossref_citationtrail_10_1109_TSP_2008_2010600 |
| PublicationCentury | 2000 |
| PublicationDate | 2009-04-01 |
| PublicationDateYYYYMMDD | 2009-04-01 |
| PublicationDate_xml | – month: 04 year: 2009 text: 2009-04-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | New York, NY |
| PublicationPlace_xml | – name: New York, NY – name: New York |
| PublicationTitle | IEEE transactions on signal processing |
| PublicationTitleAbbrev | TSP |
| PublicationYear | 2009 |
| Publisher | IEEE Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref34 ref37 ref15 bas (ref21) 2003; 3 ref36 ref14 ref30 ref11 ref32 ref10 ref17 ref38 ref16 ref19 strogatz (ref7) 2001 ref18 javidi (ref28) 2008 sayed (ref1) 2003 haykin (ref43) 2001 ref46 ref24 ref45 ref23 ref26 ref47 ref25 ref20 ref42 ref22 douglas (ref41) 2008 ref44 amblard (ref39) 2004 hamilton (ref12) 1899 ref27 ref29 ref8 ref9 mandic (ref33) 2008 ref4 ref6 ref5 kantor (ref31) 1989 ref40 farhang-boroujeny (ref2) 1999 vaseghi (ref3) 2002 sangwine (ref48) 2005 |
| References_xml | – ident: ref9 doi: 10.1109/PROC.1975.9807 – year: 2008 ident: ref33 publication-title: Complex Valued Nonlinear Adaptive Filters A Neural Network Approach – year: 1999 ident: ref2 publication-title: Adaptive Filters Theory and Applications – year: 2008 ident: ref41 article-title: Mean and mean-square analysis of the complex LMS algorithm for non-circular Gaussian signals publication-title: IEEE Digital Signal Processing and Signal Processing Education Workshop – ident: ref40 doi: 10.1016/j.neunet.2007.09.015 – start-page: 54 year: 2008 ident: ref28 article-title: The augmented complex least mean square algorithm with application to adaptive prediction problems publication-title: IAPR Workshop Cognitive Information Processing – ident: ref22 doi: 10.1109/TSP.2007.910477 – ident: ref42 doi: 10.1109/TSP.2007.906773 – ident: ref5 doi: 10.1109/78.558478 – year: 2001 ident: ref43 publication-title: Adaptive Filter Theory – start-page: 23 year: 2004 ident: ref39 article-title: On properness of quaternion valued random variables publication-title: Proc IMA Conf Mathematics in Signal Processing – ident: ref11 doi: 10.1109/TSP.2002.808085 – ident: ref19 doi: 10.1109/78.960432 – year: 1899 ident: ref12 publication-title: Elements of Quaternions – ident: ref15 doi: 10.1109/ICHR.2005.1573546 – year: 2003 ident: ref1 publication-title: Fundamentals of Adaptive Filtering – ident: ref6 doi: 10.1109/TSP.2005.849170 – ident: ref35 doi: 10.1109/TSP.2007.911278 – ident: ref46 doi: 10.1002/0470846127 – ident: ref10 doi: 10.1162/neco.2007.19.4.1039 – ident: ref27 doi: 10.1109/78.403373 – ident: ref13 doi: 10.1016/0024-3795(95)00543-9 – ident: ref45 doi: 10.1109/78.348134 – ident: ref23 doi: 10.1016/j.sigpro.2004.04.001 – year: 1989 ident: ref31 publication-title: Hypercomplex Numbers an Elementary Introduction to Algebras – ident: ref26 doi: 10.1109/ICPR.1998.711172 – ident: ref36 doi: 10.1109/78.340781 – ident: ref4 doi: 10.1109/78.218137 – ident: ref32 doi: 10.1007/978-94-011-5768-1 – volume: 3 start-page: iii year: 2003 ident: ref21 article-title: Color image watermarking using quaternion Fourier transform publication-title: Proc IEEE Int Conf Acoustics Speech Signal Processing – ident: ref16 doi: 10.1016/j.jmgm.2006.04.002 – ident: ref29 doi: 10.1016/j.renene.2008.03.022 – year: 2001 ident: ref7 publication-title: Nonlinear Dynamics and Chaos With Applications to Physics Biology Chemistry and Engineering (Studies in Nonlinearity) – ident: ref30 doi: 10.1007/b117685 – ident: ref18 doi: 10.1109/ICASSP.1998.681800 – ident: ref37 doi: 10.1109/78.554305 – ident: ref47 doi: 10.1007/978-0-387-74367-7 – ident: ref24 doi: 10.1109/TSP.2006.870630 – ident: ref44 doi: 10.1016/S0024-3795(00)00246-9 – ident: ref20 doi: 10.1109/ISSPA.2001.949760 – ident: ref38 doi: 10.1137/S0040585X97976696 – year: 2002 ident: ref3 publication-title: Advanced Digital Signal Processing and Noise Reduction – ident: ref25 doi: 10.1016/j.cpc.2006.12.005 – ident: ref17 doi: 10.1109/83.760310 – year: 2005 ident: ref48 publication-title: Quaternion Toolbox for Matlab – ident: ref34 doi: 10.1109/TNN.2007.911747 – ident: ref14 doi: 10.4271/2004-01-2179 – ident: ref8 doi: 10.1016/j.renene.2005.07.006 |
| SSID | ssj0014496 |
| Score | 2.4567535 |
| Snippet | The quaternion least mean square (QLMS) algorithm is introduced for adaptive filtering of three- and four-dimensional processes, such as those observed in... |
| SourceID | proquest pascalfrancis crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1316 |
| SubjectTerms | Adaptive filters Adaptive multistep ahead prediction Adaptive signal processing Algorithms Applied sciences Benchmarking data fusion via vector spaces Detection, estimation, filtering, equalization, prediction Exact sciences and technology Filtering algorithms Information theory Information, signal and communications theory Least mean squares Least squares approximation Mathematical analysis Miscellaneous multidimensional adaptive filters Multidimensional signal processing quaternion signal processing Quaternions Radar signal processing Signal and communications theory Signal processing Signal processing algorithms Signal, noise Sonar Statistics Telecommunications and information theory Vectors (mathematics) wind modeling |
| Title | The Quaternion LMS Algorithm for Adaptive Filtering of Hypercomplex Processes |
| URI | https://ieeexplore.ieee.org/document/4696053 https://www.proquest.com/docview/862620549 https://www.proquest.com/docview/34943684 https://www.proquest.com/docview/889386218 |
| Volume | 57 |
| WOSCitedRecordID | wos000264247400008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0476 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014496 issn: 1053-587X databaseCode: RIE dateStart: 19910101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4B6qE90AdUpLTgQy9IpOvETuIcV1VXHABRQdHeotge05XoBm12q_78jp1sBIJW4hbJdmTNw_7G8wL4nNrEciXrWLg0i6XmOlZI6u4M5rqQKHXI474-Lc7P1XRaXmzA8ZALg4gh-Ay_-M_gy7eNWfmnshGZcoS-xSZsFkXR5WoNHgMpQy8uggsizlQxXbskeTm6urzogia95zf3uWz3rqDQU8VHRNYtEcV13SweHczhtpm8ft4-38B2jyrZuBODt7CB83fw6l6twR04I4Fg31e1fwAkXrDTs0s2vr1pFrPlz1-MoCsb2_rOH35sMvMudFrFGsdOyFBdhMBz_MP6tAJsd-HH5NvV15O476UQG6LM0idXOVkqgYUhjTNW1Crj2hqBWiaorLXcSe4yVGnihBPSZFleF0KUqAmkafEetubNHPeAZdZZR0sl11qKXGpLkMAhGaKpM1rqCEZr8lamLzTu-13cVsHg4GVFDOnaX_YMieBoWHHXFdn4z9wdT_BhXk_rCA4ecHAYTwnikk2mIthfs7Tq1bStvDmXEmgtIzgcRkm_vNOknmOzaitfvkfkSkbA_jFDEeSjHyXqw9Nb24eXaxcUTz7C1nKxwk_wwvxeztrFQZDiv1AJ8Kk |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFD4aA4nxMC5jImxsfuAFidAkdhLnsZpWFdFWQyuob1FsH0Ol0UxNi_j5HDtpNMRF4i2S7cg6F_s7PjeA14mJTSRFFXKbpKFQkQolkrpbjZnKBQrl87g_T_LZTC4WxdUevO1zYRDRB5_hO_fpffmm1lv3VDYgU47QN78H91MhkrjN1up9BkL4blwEGHiYynyxc0pGxWB-fdWGTTrfb-ay2e5cQr6riouJrBoii237Wfx2NPv7ZvT4_3b6BA47XMmGrSA8hT1cPYNHd6oNHsGURIJ93FbuCZC4wSbTaza8-VKvl5uv3xiBVzY01a07_tho6ZzotIrVlo3JVF370HP8wbrEAmyew6fR5fxiHHbdFEJNlNm49CorCskx16Rz2vBKppEymqMSMUpjTGRFZFOUSWy55UKnaVblnBeoCKYpfgz7q3qFL4ClxhpLS0WklOCZUIZAgUUyRROrlVABDHbkLXVXatx1vLgpvckRFSUxpG2A2TEkgDf9itu2zMY_5h45gvfzOloHcPYLB_vxhEAuWWUygJMdS8tOUZvSGXQJwdYigPN-lDTMuU2qFdbbpnQFfHgmRQDsLzMkgT76USxf_nlr5_BwPJ9Oysn72YcTONg5pKL4FPY36y2-ggf6-2bZrM-8RP8E9P_z8A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Quaternion+LMS+Algorithm+for+Adaptive+Filtering+of+Hypercomplex+Processes&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Took%2C+C.C.&rft.au=Mandic%2C+D.P.&rft.date=2009-04-01&rft.issn=1053-587X&rft.eissn=1941-0476&rft.volume=57&rft.issue=4&rft.spage=1316&rft.epage=1327&rft_id=info:doi/10.1109%2FTSP.2008.2010600&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSP_2008_2010600 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon |