The Quaternion LMS Algorithm for Adaptive Filtering of Hypercomplex Processes

The quaternion least mean square (QLMS) algorithm is introduced for adaptive filtering of three- and four-dimensional processes, such as those observed in atmospheric modeling (wind, vector fields). These processes exhibit complex nonlinear dynamics and coupling between the dimensions, which make th...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on signal processing Ročník 57; číslo 4; s. 1316 - 1327
Hlavní autoři: Took, C.C., Mandic, D.P.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, NY IEEE 01.04.2009
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1053-587X, 1941-0476
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The quaternion least mean square (QLMS) algorithm is introduced for adaptive filtering of three- and four-dimensional processes, such as those observed in atmospheric modeling (wind, vector fields). These processes exhibit complex nonlinear dynamics and coupling between the dimensions, which make their component-wise processing by multiple univariate LMS, bivariate complex LMS (CLMS), or multichannel LMS (MLMS) algorithms inadequate. The QLMS accounts for these problems naturally, as it is derived directly in the quaternion domain. The analysis shows that QLMS operates inherently based on the so called ldquoaugmentedrdquo statistics, that is, both the covariance E { xx H } and pseudocovariance E { xx T } of the tap input vector x are taken into account. In addition, the operation in the quaternion domain facilitates fusion of heterogeneous data sources, for instance, the three vector dimensions of the wind field and air temperature. Simulations on both benchmark and real world data support the approach.
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
content type line 23
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2008.2010600