Generalized Kakeya sets for polynomial evaluation and faster computation of fermionants

We present two new data structures for computing values of an n -variate polynomial P of degree at most d over a finite field of q elements. Assuming that d divides q - 1 , our first data structure relies on ( d + 1 ) n + 2 tabulated values of P to produce the value of P at any of the q n points usi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Algorithmica Ročník 81; číslo 10; s. 4010 - 4028
Hlavní autoři: Björklund, Andreas, Kaski, Petteri, Williams, Ryan
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.10.2019
Springer Nature B.V
Témata:
ISSN:0178-4617, 1432-0541, 1432-0541
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We present two new data structures for computing values of an n -variate polynomial P of degree at most d over a finite field of q elements. Assuming that d divides q - 1 , our first data structure relies on ( d + 1 ) n + 2 tabulated values of P to produce the value of P at any of the q n points using O ( n q d 2 ) arithmetic operations in the finite field. Assuming that s divides d and d  /  s divides q - 1 , our second data structure assumes that P satisfies a degree-separability condition and relies on ( d / s + 1 ) n + s tabulated values to produce the value of P at any point using O n q s s q arithmetic operations. Our data structures are based on generalizing upper-bound constructions due to Mockenhaupt and Tao (Duke Math J 121(1):35–74, 2004 ), Saraf and Sudan (Anal PDE 1(3):375–379, 2008 ) and Dvir (Incidence theorems and their applications, 2012 . arXiv:1208.5073 ) for Kakeya sets in finite vector spaces from linear to higher-degree polynomial curves. As an application we show that the new data structures enable a faster algorithm for computing integer-valued fermionants , a family of self-reducible polynomial functions introduced by Chandrasekharan and Wiese (Partition functions of strongly correlated electron systems as fermionants, 2011 . arXiv:1108.2461v1 ) that captures numerous fundamental algebraic and combinatorial functions such as the determinant, the permanent, the number of Hamiltonian cycles in a directed multigraph, as well as certain partition functions of strongly correlated electron systems in statistical physics. In particular, a corollary of our main theorem for fermionants is that the permanent of an m × m integer matrix with entries bounded in absolute value by a constant can be computed in time 2 m - Ω m / log log m , improving an earlier algorithm of Björklund (in: Proceedings of the 15th SWAT, vol 17, pp 1–11, 2016 ) that runs in time 2 m - Ω m / log m .
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0178-4617
1432-0541
1432-0541
DOI:10.1007/s00453-018-0513-7