Robust estimation in generalized linear models: the density power divergence approach

The generalized linear model is a very important tool for analyzing real data in several application domains where the relationship between the response and explanatory variables may not be linear or the distributions may not be normal in all the cases. Quite often such real data contain a significa...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Test (Madrid, Spain) Ročník 25; číslo 2; s. 269 - 290
Hlavní autori: Ghosh, Abhik, Basu, Ayanendranath
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2016
Springer Nature B.V
Predmet:
ISSN:1133-0686, 1863-8260
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The generalized linear model is a very important tool for analyzing real data in several application domains where the relationship between the response and explanatory variables may not be linear or the distributions may not be normal in all the cases. Quite often such real data contain a significant number of outliers in relation to the standard parametric model used in the analysis; in such cases inference based on the maximum likelihood estimator could be unreliable. In this paper, we develop a robust estimation procedure for the generalized linear models that can generate robust estimators with little loss in efficiency. We will also explore two particular special cases in detail—Poisson regression for count data and logistic regression for binary data. We will also illustrate the performance of the proposed estimators through some real-life examples.
Bibliografia:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:1133-0686
1863-8260
DOI:10.1007/s11749-015-0445-3