Efficient online quantum state estimation using a matrix-exponentiated gradient method

In this paper, we explore an efficient online algorithm for quantum state estimation based on a matrix-exponentiated gradient method previously used in the context of machine learning. The state update is governed by a learning rate that determines how much weight is given to the new measurement res...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:New journal of physics Ročník 21; číslo 3; s. 33006 - 33029
Hlavní autoři: Youssry, Akram, Ferrie, Christopher, Tomamichel, Marco
Médium: Journal Article
Jazyk:angličtina
Vydáno: Bristol IOP Publishing 15.03.2019
Témata:
ISSN:1367-2630, 1367-2630
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we explore an efficient online algorithm for quantum state estimation based on a matrix-exponentiated gradient method previously used in the context of machine learning. The state update is governed by a learning rate that determines how much weight is given to the new measurement results obtained in each step. We show convergence of the running state estimate in probability to the true state for both noiseless and noisy measurements. We find that in the latter case the learning rate has to be chosen adaptively and decreasing to guarantee convergence beyond the noise threshold. As a practical alternative we then propose to use running averages of the measurement statistics and a constant learning rate to overcome the noise problem. The proposed algorithm is numerically compared with batch maximum-likelihood and least-squares estimators. The results show a superior performance of the new algorithm in terms of accuracy and runtime complexity.
Bibliografie:NJP-109265.R3
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1367-2630
1367-2630
DOI:10.1088/1367-2630/ab0438