A Modified Artificial Hummingbird Algorithm for solving optimal power flow problem in power systems

Optimal power flow (OPF) problem solution is a crucial task for the operators and decision makers to assign the best setting of the system components to obtain the most economic, environmental, and technical suitable state. Artificial Hummingbird Algorithm is a recent optimization algorithm that has...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Energy reports Ročník 11; s. 982 - 1005
Hlavní autoři: Ebeed, Mohamed, Abdelmotaleb, Mohamed A., Khan, Noor Habib, Jamal, Raheela, Kamel, Salah, Hussien, Abdelazim G., Zawbaa, Hossam M., Jurado, Francisco, Sayed, Khairy
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.06.2024
Elsevier
Témata:
ISSN:2352-4847, 2352-4847
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Optimal power flow (OPF) problem solution is a crucial task for the operators and decision makers to assign the best setting of the system components to obtain the most economic, environmental, and technical suitable state. Artificial Hummingbird Algorithm is a recent optimization algorithm that has been applied to solving several optimization problems. In this paper, a Modified Artificial Hummingbird Algorithm (MAHA) is proposed for improving the performance of the orignal Artificial Hummingbird Algorithm as well as effectivelly solve the OPF problem. The proposed MAHA is based on improving the searching capability by boosting the exploitation using the bandwidth motion around the best solution, while the exploration process is improved using the Levy flight distribution motion and the fitness-distance balance selection. This modified version helps overcome issues such as stagnation, premature convergence, and a propensity for local optima when tackling complex, nonlinear, and non-convex optimization problems like OPF. In order to confirm the effectiveness of the proposed algorithm, a series of tests are conducted on 23 standard benchmark functions, including CEC2020. The resulting outcomes are then compared to those obtained using other algorithms such as fitness-distance balance selection-based stochastic fractal search (FDBSFS), antlion optimizer (ALO), whale optimization algorithm (WOA), sine-cosine algorithm (SCA), fitness-distance balance and learning based artificial bee colony (FDB-TLABC), and traditional artificial hummingbird algorithm (AHA).The proposed algorithm is evaluated by solving the OPF problem with multiple objective functions on the IEEE 30-bus system. These objectives include fuel cost, fuel cost with valve loading effects, power losses, emissions, and voltage profile. Additionally, the algorithm's effectiveness is further assessed by testing it on single objective functions using medium and large-scale IEEE 57 and 118-bus networks.The results obtained by the proposed MAHA demonstrate its power and superiority for solving the OPF problem as well as the standard benchmark functions , surpassing the performance of other reported techniques. [Display omitted]
ISSN:2352-4847
2352-4847
DOI:10.1016/j.egyr.2023.12.053