Faster, but weaker, relaxations for quadratically constrained quadratic programs
We introduce a new relaxation framework for nonconvex quadratically constrained quadratic programs (QCQPs). In contrast to existing relaxations based on semidefinite programming (SDP), our relaxations incorporate features of both SDP and second order cone programming (SOCP) and, as a result, solve m...
Saved in:
| Published in: | Computational optimization and applications Vol. 59; no. 1-2; pp. 27 - 45 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Boston
Springer US
01.10.2014
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0926-6003, 1573-2894 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | We introduce a new relaxation framework for nonconvex quadratically constrained quadratic programs (QCQPs). In contrast to existing relaxations based on semidefinite programming (SDP), our relaxations incorporate features of both SDP and second order cone programming (SOCP) and, as a result, solve more quickly than SDP. A downside is that the calculated bounds are weaker than those gotten by SDP. The framework allows one to choose a block-diagonal structure for the mixed SOCP-SDP, which in turn allows one to control the speed and bound quality. For a fixed block-diagonal structure, we also introduce a procedure to improve the bound quality without increasing computation time significantly. The effectiveness of our framework is illustrated on a large sample of QCQPs from various sources. |
|---|---|
| Bibliography: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 0926-6003 1573-2894 |
| DOI: | 10.1007/s10589-013-9618-8 |