A Low-Complexity ECG Feature Extraction Algorithm for Mobile Healthcare Applications

This paper introduces a low-complexity algorithm for the extraction of the fiducial points from the electrocardiogram (ECG). The application area we consider is that of remote cardiovascular monitoring, where continuous sensing and processing takes place in low-power, computationally constrained dev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of biomedical and health informatics Jg. 17; H. 2; S. 459 - 469
Hauptverfasser: Mazomenos, E. B., Biswas, D., Acharyya, A., Taihai Chen, Maharatna, K., Rosengarten, J., Morgan, J., Curzen, N.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.03.2013
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2168-2194, 2168-2208, 2168-2208
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This paper introduces a low-complexity algorithm for the extraction of the fiducial points from the electrocardiogram (ECG). The application area we consider is that of remote cardiovascular monitoring, where continuous sensing and processing takes place in low-power, computationally constrained devices, thus the power consumption and complexity of the processing algorithms should remain at a minimum level. Under this context, we choose to employ the discrete wavelet transform (DWT) with the Haar function being the mother wavelet, as our principal analysis method. From the modulus-maxima analysis on the DWT coefficients, an approximation of the ECG fiducial points is extracted. These initial findings are complimented with a refinement stage, based on the time-domain morphological properties of the ECG, which alleviates the decreased temporal resolution of the DWT. The resulting algorithm is a hybrid scheme of time- and frequency-domain signal processing. Feature extraction results from 27 ECG signals from QTDB were tested against manual annotations and used to compare our approach against the state-of-the art ECG delineators. In addition, 450 signals from the 15-lead PTBDB are used to evaluate the obtained performance against the CSE tolerance limits. Our findings indicate that all but one CSE limits are satisfied. This level of performance combined with a complexity analysis, where the upper bound of the proposed algorithm, in terms of arithmetic operations, is calculated as 2.423 N +214 additions and 1.093 N +12 multiplications for N ≤ 861 or 2.553 N +102 additions and 1.093 N +10 multiplications for N > 861 ( N being the number of input samples), reveals that the proposed method achieves an ideal tradeoff between computational complexity and performance, a key requirement in remote cardiovascular disease monitoring systems.
AbstractList This paper introduces a low-complexity algorithm for the extraction of the fiducial points from the electrocardiogram (ECG). The application area we consider is that of remote cardiovascular monitoring, where continuous sensing and processing takes place in low-power, computationally constrained devices, thus the power consumption and complexity of the processing algorithms should remain at a minimum level. Under this context, we choose to employ the discrete wavelet transform (DWT) with the Haar function being the mother wavelet, as our principal analysis method. From the modulus-maxima analysis on the DWT coefficients, an approximation of the ECG fiducial points is extracted. These initial findings are complimented with a refinement stage, based on the time-domain morphological properties of the ECG, which alleviates the decreased temporal resolution of the DWT. The resulting algorithm is a hybrid scheme of time- and frequency-domain signal processing. Feature extraction results from 27 ECG signals from QTDB were tested against manual annotations and used to compare our approach against the state-of-the art ECG delineators. In addition, 450 signals from the 15-lead PTBDB are used to evaluate the obtained performance against the CSE tolerance limits. Our findings indicate that all but one CSE limits are satisfied. This level of performance combined with a complexity analysis, where the upper bound of the proposed algorithm, in terms of arithmetic operations, is calculated as hbox 2.423 N + hbox 214 additions and hbox 1.093 N + hbox 12 multiplications for N less than or equal to hbox 861 or hbox 2.553 N + hbox 102 additions and hbox 1.093 N + hbox 10 multiplications for syntax error at token & ( N being the number of input samples), reveals that the proposed method achieves an ideal tradeoff between computational complexity and performance, a key requirement in remote cardiovascular disease monitoring systems.
This paper introduces a low-complexity algorithm for the extraction of the fiducial points from the Electrocardiogram (ECG). The application area we consider is that of remote cardiovascular monitoring, where continuous sensing and processing takes place in low-power, computationally constrained devices, thus the power consumption and complexity of the processing algorithms should remain at a minimum level. Under this context, we choose to employ the Discrete Wavelet Transform (DWT) with the Haar function being the mother wavelet, as our principal analysis method. From the modulus-maxima analysis on the DWT coefficients, an approximation of the ECG fiducial points is extracted. These initial findings are complimented with a refinement stage, based on the time-domain morphological properties of the ECG, which alleviates the decreased temporal resolution of the DWT. The resulting algorithm is a hybrid scheme of time and frequency domain signal processing. Feature extraction results from 27 ECG signals from QTDB, were tested against manual annotations and used to compare our approach against the state-of-the art ECG delineators. In addition, 450 signals from the 15-lead PTBDB are used to evaluate the obtained performance against the CSE tolerance limits. Our findings indicate that all but one CSE limits are satisfied. This level of performance combined with a complexity analysis, where the upper bound of the proposed algorithm, in terms of arithmetic operations, is calculated as 2:423N + 214 additions and 1:093N + 12 multiplications for N 861 or 2:553N + 102 additions and 1:093N +10 multiplications for N > 861 (N being the number of input samples), reveals that the proposed method achieves an ideal trade-off between computational complexity and performance, a key requirement in remote CVD monitoring systems.This paper introduces a low-complexity algorithm for the extraction of the fiducial points from the Electrocardiogram (ECG). The application area we consider is that of remote cardiovascular monitoring, where continuous sensing and processing takes place in low-power, computationally constrained devices, thus the power consumption and complexity of the processing algorithms should remain at a minimum level. Under this context, we choose to employ the Discrete Wavelet Transform (DWT) with the Haar function being the mother wavelet, as our principal analysis method. From the modulus-maxima analysis on the DWT coefficients, an approximation of the ECG fiducial points is extracted. These initial findings are complimented with a refinement stage, based on the time-domain morphological properties of the ECG, which alleviates the decreased temporal resolution of the DWT. The resulting algorithm is a hybrid scheme of time and frequency domain signal processing. Feature extraction results from 27 ECG signals from QTDB, were tested against manual annotations and used to compare our approach against the state-of-the art ECG delineators. In addition, 450 signals from the 15-lead PTBDB are used to evaluate the obtained performance against the CSE tolerance limits. Our findings indicate that all but one CSE limits are satisfied. This level of performance combined with a complexity analysis, where the upper bound of the proposed algorithm, in terms of arithmetic operations, is calculated as 2:423N + 214 additions and 1:093N + 12 multiplications for N 861 or 2:553N + 102 additions and 1:093N +10 multiplications for N > 861 (N being the number of input samples), reveals that the proposed method achieves an ideal trade-off between computational complexity and performance, a key requirement in remote CVD monitoring systems.
This paper introduces a low-complexity algorithm for the extraction of the fiducial points from the Electrocardiogram (ECG). The application area we consider is that of remote cardiovascular monitoring, where continuous sensing and processing takes place in low-power, computationally constrained devices, thus the power consumption and complexity of the processing algorithms should remain at a minimum level. Under this context, we choose to employ the Discrete Wavelet Transform (DWT) with the Haar function being the mother wavelet, as our principal analysis method. From the modulus-maxima analysis on the DWT coefficients, an approximation of the ECG fiducial points is extracted. These initial findings are complimented with a refinement stage, based on the time-domain morphological properties of the ECG, which alleviates the decreased temporal resolution of the DWT. The resulting algorithm is a hybrid scheme of time and frequency domain signal processing. Feature extraction results from 27 ECG signals from QTDB, were tested against manual annotations and used to compare our approach against the state-of-the art ECG delineators. In addition, 450 signals from the 15-lead PTBDB are used to evaluate the obtained performance against the CSE tolerance limits. Our findings indicate that all but one CSE limits are satisfied. This level of performance combined with a complexity analysis, where the upper bound of the proposed algorithm, in terms of arithmetic operations, is calculated as 2:423N + 214 additions and 1:093N + 12 multiplications for N 861 or 2:553N + 102 additions and 1:093N +10 multiplications for N > 861 (N being the number of input samples), reveals that the proposed method achieves an ideal trade-off between computational complexity and performance, a key requirement in remote CVD monitoring systems.
This paper introduces a low-complexity algorithm for the extraction of the fiducial points from the electrocardiogram (ECG). The application area we consider is that of remote cardiovascular monitoring, where continuous sensing and processing takes place in low-power, computationally constrained devices, thus the power consumption and complexity of the processing algorithms should remain at a minimum level. Under this context, we choose to employ the discrete wavelet transform (DWT) with the Haar function being the mother wavelet, as our principal analysis method. From the modulus-maxima analysis on the DWT coefficients, an approximation of the ECG fiducial points is extracted. These initial findings are complimented with a refinement stage, based on the time-domain morphological properties of the ECG, which alleviates the decreased temporal resolution of the DWT. The resulting algorithm is a hybrid scheme of time- and frequency-domain signal processing. Feature extraction results from 27 ECG signals from QTDB were tested against manual annotations and used to compare our approach against the state-of-the art ECG delineators. In addition, 450 signals from the 15-lead PTBDB are used to evaluate the obtained performance against the CSE tolerance limits. Our findings indicate that all but one CSE limits are satisfied. This level of performance combined with a complexity analysis, where the upper bound of the proposed algorithm, in terms of arithmetic operations, is calculated as 2.423 N +214 additions and 1.093 N +12 multiplications for N ≤ 861 or 2.553 N +102 additions and 1.093 N +10 multiplications for N > 861 ( N being the number of input samples), reveals that the proposed method achieves an ideal tradeoff between computational complexity and performance, a key requirement in remote cardiovascular disease monitoring systems.
This paper introduces a low-complexity algorithm for the extraction of the fiducial points from the electrocardiogram (ECG). The application area we consider is that of remote cardiovascular monitoring, where continuous sensing and processing takes place in low-power, computationally constrained devices, thus the power consumption and complexity of the processing algorithms should remain at a minimum level. Under this context, we choose to employ the discrete wavelet transform (DWT) with the Haar function being the mother wavelet, as our principal analysis method. From the modulus-maxima analysis on the DWT coefficients, an approximation of the ECG fiducial points is extracted. These initial findings are complimented with a refinement stage, based on the time-domain morphological properties of the ECG, which alleviates the decreased temporal resolution of the DWT. The resulting algorithm is a hybrid scheme of time- and frequency-domain signal processing. Feature extraction results from 27 ECG signals from QTDB were tested against manual annotations and used to compare our approach against the state-of-the art ECG delineators. In addition, 450 signals from the 15-lead PTBDB are used to evaluate the obtained performance against the CSE tolerance limits. Our findings indicate that all but one CSE limits are satisfied. This level of performance combined with a complexity analysis, where the upper bound of the proposed algorithm, in terms of arithmetic operations, is calculated as [Formula Omitted] additions and [Formula Omitted] multiplications for [Formula Omitted] or [Formula Omitted] additions and [Formula Omitted] multiplications for [Formula Omitted] ( [Formula Omitted] being the number of input samples), reveals that the proposed method achieves an ideal tradeoff between computational complexity and performance, a key requirement in remote cardiovascular disease monitoring systems.
Author Maharatna, K.
Rosengarten, J.
Acharyya, A.
Biswas, D.
Taihai Chen
Mazomenos, E. B.
Curzen, N.
Morgan, J.
Author_xml – sequence: 1
  givenname: E. B.
  surname: Mazomenos
  fullname: Mazomenos, E. B.
  email: ebm@ecs.soton.ac.uk
  organization: Sch. of Electron. & Comput. Sci., Univ. of Southampton, Southampton, UK
– sequence: 2
  givenname: D.
  surname: Biswas
  fullname: Biswas, D.
  email: db9g10@ecs.soton.ac.uk
  organization: Sch. of Electron. & Comput. Sci., Univ. of Southampton, Southampton, UK
– sequence: 3
  givenname: A.
  surname: Acharyya
  fullname: Acharyya, A.
  email: amit_acharyya@iith.ac.in
  organization: Dept. of Electr. Eng., Indian Inst. of Technol., Hyderabad, Hyderabad, India
– sequence: 4
  surname: Taihai Chen
  fullname: Taihai Chen
  email: tc10g09@ecs.soton.ac.uk
  organization: Sch. of Electron. & Comput. Sci., Univ. of Southampton, Southampton, UK
– sequence: 5
  givenname: K.
  surname: Maharatna
  fullname: Maharatna, K.
  email: km3@ecs.soton.ac.uk
  organization: Sch. of Electron. & Comput. Sci., Univ. of Southampton, Southampton, UK
– sequence: 6
  givenname: J.
  surname: Rosengarten
  fullname: Rosengarten, J.
  email: james@rosengarten.co.uk
  organization: Southampton Univ. Hosp. NHS Trust, Southampton, UK
– sequence: 7
  givenname: J.
  surname: Morgan
  fullname: Morgan, J.
  email: jmm@hrclinic.org
  organization: Southampton Univ. Hosp. NHS Trust, Southampton, UK
– sequence: 8
  givenname: N.
  surname: Curzen
  fullname: Curzen, N.
  email: nick.curzen@suht.swest.nhs.uk
  organization: Southampton Univ. Hosp. NHS Trust, Southampton, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23362250$$D View this record in MEDLINE/PubMed
BookMark eNqF0stu3CAUBmBUpWouzQNUlSpL3WTjKWCuy-locpEmyma6RgTjhggbF7CSvH1wZqaLLFo2IPSdI3F-TsHREAYLwBcEFwhB-WN7s_25wBDhBcYNahD-AE4wYqLGGIqjwxlJcgzOU3qEZYlyJdkncIybhmFM4QnYLqtNeKpXoR-9fXb5pVqvrqpLq_MUbbV-zlGb7MJQLf3vEF1-6KsuxOo23Dtvq2urfX4wutDlOHpn9GzTZ_Cx0z7Z8_1-Bn5drrer63pzd3WzWm5qQ4jINcesNajlTHIBjWhh1yFqEccdg7KjDZaUyk5qXEiLDLcSt0JQw4iVLaKyOQMXu75jDH8mm7LqXTLWez3YMCWFCJWSM8Hg_2lDBBGc05l-f0cfwxSH8pCiMCGEIj6rb3s13fe2VWN0vY4v6jDaAvgOmBhSirZTxuW3-ZSZOq8QVHOOas5RzTmqfY6lEr2rPDT_V83XXY2z1v71jJS_QHHzCsJIpKM
CODEN IJBHA9
CitedBy_id crossref_primary_10_1109_ACCESS_2016_2629486
crossref_primary_10_3390_ijerph182010792
crossref_primary_10_1016_j_cmpb_2015_06_003
crossref_primary_10_1016_j_micpro_2020_103771
crossref_primary_10_1109_JBHI_2017_2773097
crossref_primary_10_1109_TCSII_2017_2658670
crossref_primary_10_1007_s13246_018_0642_y
crossref_primary_10_1016_j_bspc_2024_106211
crossref_primary_10_1186_s12938_018_0487_3
crossref_primary_10_1016_j_techfore_2021_121127
crossref_primary_10_3103_S0146411619060051
crossref_primary_10_1007_s11063_022_10949_9
crossref_primary_10_1038_s41598_019_51061_8
crossref_primary_10_1016_j_cmpb_2024_108249
crossref_primary_10_1007_s10916_018_1006_6
crossref_primary_10_3390_bioengineering4020032
crossref_primary_10_1016_j_bspc_2020_102291
crossref_primary_10_1109_TCSI_2019_2961643
crossref_primary_10_1049_iet_spr_2017_0296
crossref_primary_10_3390_brainsci10020118
crossref_primary_10_1109_JSEN_2017_2786301
crossref_primary_10_1007_s13748_021_00250_6
crossref_primary_10_3390_diagnostics8010010
crossref_primary_10_1109_JSEN_2014_2363571
crossref_primary_10_1049_htl_2015_0062
crossref_primary_10_1007_s11277_017_4884_x
crossref_primary_10_1016_j_cmpb_2018_01_018
crossref_primary_10_1109_TBCAS_2017_2731797
crossref_primary_10_1007_s10586_018_2273_1
crossref_primary_10_1007_s10916_018_0983_9
crossref_primary_10_1088_1674_4926_37_5_055006
crossref_primary_10_3390_app14010342
crossref_primary_10_1007_s10462_020_09928_0
crossref_primary_10_1109_TCSI_2021_3057584
crossref_primary_10_1016_j_bspc_2014_10_012
crossref_primary_10_1016_j_bspc_2020_102260
crossref_primary_10_3233_IDA_160821
crossref_primary_10_1109_JSEN_2015_2413836
crossref_primary_10_1109_TBCAS_2017_2760298
crossref_primary_10_1007_s11432_014_5199_0
crossref_primary_10_1016_j_compbiomed_2016_09_004
crossref_primary_10_1007_s10916_019_1362_x
crossref_primary_10_1049_el_2016_4149
crossref_primary_10_1109_TCSI_2018_2867746
crossref_primary_10_3390_app11135908
crossref_primary_10_1109_JBHI_2017_2671443
crossref_primary_10_1088_0967_3334_37_2_203
crossref_primary_10_1109_TBME_2015_2422751
crossref_primary_10_1016_j_vlsi_2017_10_006
crossref_primary_10_1016_j_bspc_2016_12_017
crossref_primary_10_1109_JBHI_2015_2466440
crossref_primary_10_1016_j_bspc_2018_03_003
crossref_primary_10_3390_s17102435
crossref_primary_10_1109_TC_2016_2622262
crossref_primary_10_1016_j_vlsi_2021_09_006
crossref_primary_10_1109_TAFFC_2018_2851236
crossref_primary_10_1155_2017_5980541
crossref_primary_10_1587_transinf_2017EDP7285
crossref_primary_10_1038_s41598_024_59851_5
crossref_primary_10_1371_journal_pone_0318070
crossref_primary_10_1109_ACCESS_2017_2754283
crossref_primary_10_1016_j_bspc_2020_101946
crossref_primary_10_1109_JBHI_2020_2973982
crossref_primary_10_4018_IJEHMC_2018070105
crossref_primary_10_1016_j_bspc_2018_05_005
crossref_primary_10_1109_TBCAS_2018_2833624
crossref_primary_10_1371_journal_pone_0190323
crossref_primary_10_1371_journal_pone_0313815
crossref_primary_10_1016_j_compbiomed_2021_104804
crossref_primary_10_1109_ACCESS_2021_3119630
crossref_primary_10_1016_j_compbiomed_2015_09_005
crossref_primary_10_1109_TBCAS_2019_2892297
crossref_primary_10_1007_s10916_017_0883_4
crossref_primary_10_1016_j_irbm_2019_04_003
crossref_primary_10_1016_j_bspc_2018_08_023
crossref_primary_10_1109_JTEHM_2020_3000327
crossref_primary_10_26634_jes_4_2_4834
crossref_primary_10_1007_s10462_021_09999_7
crossref_primary_10_1016_j_cmpb_2020_105607
crossref_primary_10_3390_s20216318
crossref_primary_10_1007_s13369_015_1658_1
crossref_primary_10_1109_ACCESS_2018_2848201
Cites_doi 10.1109/IEMBS.2000.897966
10.1109/TBME.2006.877103
10.1007/BF02442095
10.1109/CSSE.2008.1096
10.1109/TITB.2011.2163943
10.1109/IEMBS.2005.1615314
10.1109/10.362922
10.1007/BF02442378
10.1016/0010-4809(87)90024-3
10.1109/TBME.2003.821031
10.1109/CIC.2000.898460
10.1109/JSEN.2010.2045498
10.1109/IEMBS.1995.579466
10.1109/IEMBS.2003.1280402
10.1109/TBME.1986.325695
10.1007/978-3-540-89208-3_7
10.1109/TBME.1985.325532
10.1109/10.704877
10.1109/IEMBS.1999.802343
10.1109/CESA.2006.4281639
10.1109/IEMBS.1996.652646
10.1016/S0169-2607(97)01780-X
10.1016/j.jelectrocard.2005.04.003
10.1016/0165-1684(88)90069-2
10.1109/51.566158
10.1006/cbmr.1994.1006
10.1109/CIC.1997.648140
10.1109/ACSSC.1992.269273
10.1109/IEMBS.1996.647474
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2013
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2013
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/TITB.2012.2231312
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Engineering Research Database
MEDLINE - Academic
MEDLINE

Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2168-2208
EndPage 469
ExternalDocumentID 2938744981
23362250
10_1109_TITB_2012_2231312
6420852
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID 0R~
4.4
6IF
6IH
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c448t-726dc1d769780c8d0ff15e172f609f5329559f9a2d76d1c7e92d885c64e9d1593
IEDL.DBID RIE
ISICitedReferencesCount 134
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000321144400022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2168-2194
2168-2208
IngestDate Thu Oct 02 05:32:35 EDT 2025
Tue Oct 07 09:43:15 EDT 2025
Sun Nov 09 06:52:15 EST 2025
Thu Apr 03 07:03:47 EDT 2025
Sat Nov 29 04:18:07 EST 2025
Tue Nov 18 22:30:38 EST 2025
Tue Aug 26 16:42:50 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c448t-726dc1d769780c8d0ff15e172f609f5329559f9a2d76d1c7e92d885c64e9d1593
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 23362250
PQID 1324445170
PQPubID 85417
PageCount 11
ParticipantIDs ieee_primary_6420852
proquest_journals_1324445170
proquest_miscellaneous_1348487750
pubmed_primary_23362250
proquest_miscellaneous_1459976860
crossref_citationtrail_10_1109_TITB_2012_2231312
crossref_primary_10_1109_TITB_2012_2231312
PublicationCentury 2000
PublicationDate 2013-03-01
PublicationDateYYYYMMDD 2013-03-01
PublicationDate_xml – month: 03
  year: 2013
  text: 2013-03-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE journal of biomedical and health informatics
PublicationTitleAbbrev JBHI
PublicationTitleAlternate IEEE J Biomed Health Inform
PublicationYear 2013
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref37
ref15
ref36
ref30
yang (ref18) 1997; 1
ref33
ref11
ref10
de lannoy (ref23) 2008; 22
(ref12) 0
ref17
ref38
ref16
ref19
(ref1) 0
(ref3) 0
(ref22) 0
ref24
(ref5) 1985; 6
ref25
ref20
ref21
velchev (ref32) 2008; 1
virgilio (ref26) 1995; 2
(ref6) 0
ref28
ref27
ref29
ref8
ref7
(ref2) 0
ref9
ref4
dokur (ref14) 1996; 3
josko (ref31) 2007
de chazal (ref39) 1996; 4
References_xml – ident: ref20
  doi: 10.1109/IEMBS.2000.897966
– ident: ref16
  doi: 10.1109/TBME.2006.877103
– ident: ref8
  doi: 10.1007/BF02442095
– year: 0
  ident: ref22
– year: 0
  ident: ref12
– ident: ref17
  doi: 10.1109/CSSE.2008.1096
– ident: ref4
  doi: 10.1109/TITB.2011.2163943
– ident: ref29
  doi: 10.1109/IEMBS.2005.1615314
– ident: ref24
  doi: 10.1109/10.362922
– ident: ref7
  doi: 10.1007/BF02442378
– year: 0
  ident: ref2
– ident: ref11
  doi: 10.1016/0010-4809(87)90024-3
– year: 0
  ident: ref3
– year: 0
  ident: ref1
– volume: 6
  start-page: 815
  year: 1985
  ident: ref5
  article-title: The CSE working party, "Recommendations for measurement standards in quantitative electrocardiography
  publication-title: Eur Heart J
– ident: ref34
  doi: 10.1109/TBME.2003.821031
– ident: ref33
  doi: 10.1109/CIC.2000.898460
– ident: ref35
  doi: 10.1109/JSEN.2010.2045498
– year: 0
  ident: ref6
– volume: 1
  start-page: 289
  year: 1997
  ident: ref18
  article-title: ECG events detection and classification using wavelet and neural networks
  publication-title: Proc IEEE Eng Med Biol Soc
– volume: 2
  start-page: 1051
  year: 1995
  ident: ref26
  article-title: ECG fiducial points detection through wavelet transform
  publication-title: Proc IEEE Eng Med Biol Soc
  doi: 10.1109/IEMBS.1995.579466
– ident: ref21
  doi: 10.1109/IEMBS.2003.1280402
– ident: ref10
  doi: 10.1109/TBME.1986.325695
– volume: 22
  start-page: 22
  year: 2008
  ident: ref23
  article-title: Supervised ECG delineation using the wavelet transform and hidden Markov models
  publication-title: Proc Conf Int Federation Med Biol Eng
  doi: 10.1007/978-3-540-89208-3_7
– ident: ref9
  doi: 10.1109/TBME.1985.325532
– volume: 1
  start-page: 22
  year: 2008
  ident: ref32
  article-title: Wavelet transform based ECG characteristic points detector
  publication-title: Proc Int Sci Conf Comp Sci
– ident: ref15
  doi: 10.1109/10.704877
– ident: ref19
  doi: 10.1109/IEMBS.1999.802343
– start-page: 1
  year: 2007
  ident: ref31
  article-title: Discrete wavelet transform in automatic ECG signal analysis
  publication-title: Proc IEEE Instrum Meas Technol Conf
– ident: ref30
  doi: 10.1109/CESA.2006.4281639
– volume: 3
  start-page: 929
  year: 1996
  ident: ref14
  article-title: Detection of ECG waveforms by using artificial neural networks
  publication-title: Proc IEEE Eng Med Biol Soc
  doi: 10.1109/IEMBS.1996.652646
– ident: ref28
  doi: 10.1016/S0169-2607(97)01780-X
– ident: ref37
  doi: 10.1016/j.jelectrocard.2005.04.003
– ident: ref13
  doi: 10.1016/0165-1684(88)90069-2
– ident: ref27
  doi: 10.1109/51.566158
– ident: ref38
  doi: 10.1006/cbmr.1994.1006
– ident: ref36
  doi: 10.1109/CIC.1997.648140
– ident: ref25
  doi: 10.1109/ACSSC.1992.269273
– volume: 4
  start-page: 1399
  year: 1996
  ident: ref39
  article-title: Automatic measurement of the QRS onset and offset in individual ECG leads
  publication-title: Proc IEEE Eng Med Biol Soc
  doi: 10.1109/IEMBS.1996.647474
SSID ssj0000816896
Score 2.449182
Snippet This paper introduces a low-complexity algorithm for the extraction of the fiducial points from the electrocardiogram (ECG). The application area we consider...
This paper introduces a low-complexity algorithm for the extraction of the fiducial points from the Electrocardiogram (ECG). The application area we consider...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 459
SubjectTerms Algorithm design and analysis
Algorithms
Databases, Factual
Discrete wavelet transform (DWT)
Discrete wavelet transforms
electrocardiogram (ECG) feature extraction
Electrocardiography
Electrocardiography - methods
Feature extraction
Humans
low complexity algorithm
mobile healthcare
Monitoring
Monitoring systems
Noise
Signal processing
Signal processing algorithms
Studies
Wavelet Analysis
Title A Low-Complexity ECG Feature Extraction Algorithm for Mobile Healthcare Applications
URI https://ieeexplore.ieee.org/document/6420852
https://www.ncbi.nlm.nih.gov/pubmed/23362250
https://www.proquest.com/docview/1324445170
https://www.proquest.com/docview/1348487750
https://www.proquest.com/docview/1459976860
Volume 17
WOSCitedRecordID wos000321144400022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2168-2208
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816896
  issn: 2168-2194
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4BqhAX2vIo21JkpJ4qDLGT2PFxi5ZSqaAettLeosR2YCW6QSFL23_fGScbcWiRerOUiWJ5Hv4m8wL4YFFs0MkpuYhtzBMlDc9kYXkZFanSsRO-LMKwCX19nc1m5tsanAy1MN77kHzmT2kZYvmutkv6VXamKBacosFd11p1tVrD_5QwQCKM45K44KiISR_EFJE5m36ZfqI8LnmK16GIBQ2xkTEab0kF909upDBi5d9oM9w6Fy__b7-vYLtHl2zcicNrWPOLHdi86uPnuzAds6_1T05GgBphtr_Z5PwzIxi4bDyb_Gqbrs6Bje9u6mbe3v5gCGrZVV2i8WCXQ64YGz-Je-_B94vJ9PyS93MVuEVnrOVaKmeF04q6D9nMRVUlUo9IplKRqdJYUle6yhQSSZyw2hvpsiy1KvHGIfyJ92FjUS_8ATCNAAYJpDNphSbXG6pzRbVOhXa-dMUIotXZ5rZvOk6zL-7y4HxEJifO5MSZvOfMCD4Or9x3HTeeI96lYx8I-xMfweGKgXmvkw85imRC7dh0NILj4TFqE4VIioWvl0STZOjCIYx6hiZJDYK4TCHNm044hu-vZOrt3_f1DrZkGKdBOWyHsNE2S_8eXtjHdv7QHKFYz7KjINZ_AEGn7bo
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5VpYJeSqHQbilgJE4It7ETJ_FxqbZsxe6KQ5B6ixLbgUplU6XZAv--M0426gEqcbOUiWJ5Hv4m8wJ4b1Bs0MkpuQhNyKNYap7KwvAyKFSchFa4svDDJpLFIr240F834ONQC-Oc88ln7piWPpZva7OiX2UnMcWCFRrcRyrCZVetNfxR8SMk_EAuiQuOqhj1YUwR6JPsPPtEmVzyGC9EEQoaYyNDNN-SSu7v3Ul-yMq_8aa_d86e_t-Od2Gnx5ds3AnEM9hwy-fweN5H0PcgG7NZ_YuTGaBWmO0fNjn9zAgIrhrHJr_bpqt0YOOr73Vz2f74yRDWsnldovlg0yFbjI3vRb5fwLezSXY65f1kBW7QHWt5ImNrhE1i6j9kUhtUlVAOsUwVB7pSoaS-dJUuJJJYYRKnpU1TZeLIaYsAKHwJm8t66Q6AJQhhkEBarSo0uk5TpSsqthKJdaUtRhCszzY3fdtxmn5xlXv3I9A5cSYnzuQ9Z0bwYXjluuu58RDxHh37QNif-AiO1gzMe628yVEoI2rIlgQjeDc8Rn2iIEmxdPWKaKIUnTgEUg_QREojjEtjpNnvhGP4_lqmDv--r7fwZJrNZ_nsfPHlFWxLP1yDMtqOYLNtVu41bJnb9vKmeeOF-w4s-PAZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Low-Complexity+ECG+Feature+Extraction+Algorithm+for+Mobile+Healthcare+Applications&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Mazomenos%2C+E.+B.&rft.au=Biswas%2C+D.&rft.au=Acharyya%2C+A.&rft.au=Taihai+Chen&rft.date=2013-03-01&rft.issn=2168-2194&rft.eissn=2168-2208&rft.volume=17&rft.issue=2&rft.spage=459&rft.epage=469&rft_id=info:doi/10.1109%2FTITB.2012.2231312&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TITB_2012_2231312
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon