Generalizability of Deep Learning Segmentation Algorithms for Automated Assessment of Cartilage Morphology and MRI Relaxometry

Background Deep learning (DL)‐based automatic segmentation models can expedite manual segmentation yet require resource‐intensive fine‐tuning before deployment on new datasets. The generalizability of DL methods to new datasets without fine‐tuning is not well characterized. Purpose Evaluate the gene...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of magnetic resonance imaging Ročník 57; číslo 4; s. 1029 - 1039
Hlavní autoři: Schmidt, Andrew M., Desai, Arjun D., Watkins, Lauren E., Crowder, Hollis A., Black, Marianne S., Mazzoli, Valentina, Rubin, Elka B., Lu, Quin, MacKay, James W., Boutin, Robert D., Kogan, Feliks, Gold, Garry E., Hargreaves, Brian A., Chaudhari, Akshay S.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Hoboken, USA John Wiley & Sons, Inc 01.04.2023
Wiley Subscription Services, Inc
Témata:
ISSN:1053-1807, 1522-2586, 1522-2586
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Background Deep learning (DL)‐based automatic segmentation models can expedite manual segmentation yet require resource‐intensive fine‐tuning before deployment on new datasets. The generalizability of DL methods to new datasets without fine‐tuning is not well characterized. Purpose Evaluate the generalizability of DL‐based models by deploying pretrained models on independent datasets varying by MR scanner, acquisition parameters, and subject population. Study Type Retrospective based on prospectively acquired data. Population Overall test dataset: 59 subjects (26 females); Study 1: 5 healthy subjects (zero females), Study 2: 8 healthy subjects (eight females), Study 3: 10 subjects with osteoarthritis (eight females), Study 4: 36 subjects with various knee pathology (10 females). Field Strength/Sequence A 3‐T, quantitative double‐echo steady state (qDESS). Assessment Four annotators manually segmented knee cartilage. Each reader segmented one of four qDESS datasets in the test dataset. Two DL models, one trained on qDESS data and another on Osteoarthritis Initiative (OAI)‐DESS data, were assessed. Manual and automatic segmentations were compared by quantifying variations in segmentation accuracy, volume, and T2 relaxation times for superficial and deep cartilage. Statistical Tests Dice similarity coefficient (DSC) for segmentation accuracy. Lin's concordance correlation coefficient (CCC), Wilcoxon rank‐sum tests, root‐mean‐squared error‐coefficient‐of‐variation to quantify manual vs. automatic T2 and volume variations. Bland–Altman plots for manual vs. automatic T2 agreement. A P value < 0.05 was considered statistically significant. Results DSCs for the qDESS‐trained model, 0.79–0.93, were higher than those for the OAI‐DESS‐trained model, 0.59–0.79. T2 and volume CCCs for the qDESS‐trained model, 0.75–0.98 and 0.47–0.95, were higher than respective CCCs for the OAI‐DESS‐trained model, 0.35–0.90 and 0.13–0.84. Bland–Altman 95% limits of agreement for superficial and deep cartilage T2 were lower for the qDESS‐trained model, ±2.4 msec and ±4.0 msec, than the OAI‐DESS‐trained model, ±4.4 msec and ±5.2 msec. Data Conclusion The qDESS‐trained model may generalize well to independent qDESS datasets regardless of MR scanner, acquisition parameters, and subject population. Evidence Level 1 Technical Efficacy Stage 1
AbstractList Deep learning (DL)-based automatic segmentation models can expedite manual segmentation yet require resource-intensive fine-tuning before deployment on new datasets. The generalizability of DL methods to new datasets without fine-tuning is not well characterized. Evaluate the generalizability of DL-based models by deploying pretrained models on independent datasets varying by MR scanner, acquisition parameters, and subject population. Retrospective based on prospectively acquired data. Overall test dataset: 59 subjects (26 females); Study 1: 5 healthy subjects (zero females), Study 2: 8 healthy subjects (eight females), Study 3: 10 subjects with osteoarthritis (eight females), Study 4: 36 subjects with various knee pathology (10 females). A 3-T, quantitative double-echo steady state (qDESS). Four annotators manually segmented knee cartilage. Each reader segmented one of four qDESS datasets in the test dataset. Two DL models, one trained on qDESS data and another on Osteoarthritis Initiative (OAI)-DESS data, were assessed. Manual and automatic segmentations were compared by quantifying variations in segmentation accuracy, volume, and T2 relaxation times for superficial and deep cartilage. Dice similarity coefficient (DSC) for segmentation accuracy. Lin's concordance correlation coefficient (CCC), Wilcoxon rank-sum tests, root-mean-squared error-coefficient-of-variation to quantify manual vs. automatic T2 and volume variations. Bland-Altman plots for manual vs. automatic T2 agreement. A P value < 0.05 was considered statistically significant. DSCs for the qDESS-trained model, 0.79-0.93, were higher than those for the OAI-DESS-trained model, 0.59-0.79. T2 and volume CCCs for the qDESS-trained model, 0.75-0.98 and 0.47-0.95, were higher than respective CCCs for the OAI-DESS-trained model, 0.35-0.90 and 0.13-0.84. Bland-Altman 95% limits of agreement for superficial and deep cartilage T2 were lower for the qDESS-trained model, ±2.4 msec and ±4.0 msec, than the OAI-DESS-trained model, ±4.4 msec and ±5.2 msec. The qDESS-trained model may generalize well to independent qDESS datasets regardless of MR scanner, acquisition parameters, and subject population. 1 TECHNICAL EFFICACY: Stage 1.
Deep learning (DL)-based automatic segmentation models can expedite manual segmentation yet require resource-intensive fine-tuning before deployment on new datasets. The generalizability of DL methods to new datasets without fine-tuning is not well characterized.BACKGROUNDDeep learning (DL)-based automatic segmentation models can expedite manual segmentation yet require resource-intensive fine-tuning before deployment on new datasets. The generalizability of DL methods to new datasets without fine-tuning is not well characterized.Evaluate the generalizability of DL-based models by deploying pretrained models on independent datasets varying by MR scanner, acquisition parameters, and subject population.PURPOSEEvaluate the generalizability of DL-based models by deploying pretrained models on independent datasets varying by MR scanner, acquisition parameters, and subject population.Retrospective based on prospectively acquired data.STUDY TYPERetrospective based on prospectively acquired data.Overall test dataset: 59 subjects (26 females); Study 1: 5 healthy subjects (zero females), Study 2: 8 healthy subjects (eight females), Study 3: 10 subjects with osteoarthritis (eight females), Study 4: 36 subjects with various knee pathology (10 females).POPULATIONOverall test dataset: 59 subjects (26 females); Study 1: 5 healthy subjects (zero females), Study 2: 8 healthy subjects (eight females), Study 3: 10 subjects with osteoarthritis (eight females), Study 4: 36 subjects with various knee pathology (10 females).A 3-T, quantitative double-echo steady state (qDESS).FIELD STRENGTH/SEQUENCEA 3-T, quantitative double-echo steady state (qDESS).Four annotators manually segmented knee cartilage. Each reader segmented one of four qDESS datasets in the test dataset. Two DL models, one trained on qDESS data and another on Osteoarthritis Initiative (OAI)-DESS data, were assessed. Manual and automatic segmentations were compared by quantifying variations in segmentation accuracy, volume, and T2 relaxation times for superficial and deep cartilage.ASSESSMENTFour annotators manually segmented knee cartilage. Each reader segmented one of four qDESS datasets in the test dataset. Two DL models, one trained on qDESS data and another on Osteoarthritis Initiative (OAI)-DESS data, were assessed. Manual and automatic segmentations were compared by quantifying variations in segmentation accuracy, volume, and T2 relaxation times for superficial and deep cartilage.Dice similarity coefficient (DSC) for segmentation accuracy. Lin's concordance correlation coefficient (CCC), Wilcoxon rank-sum tests, root-mean-squared error-coefficient-of-variation to quantify manual vs. automatic T2 and volume variations. Bland-Altman plots for manual vs. automatic T2 agreement. A P value < 0.05 was considered statistically significant.STATISTICAL TESTSDice similarity coefficient (DSC) for segmentation accuracy. Lin's concordance correlation coefficient (CCC), Wilcoxon rank-sum tests, root-mean-squared error-coefficient-of-variation to quantify manual vs. automatic T2 and volume variations. Bland-Altman plots for manual vs. automatic T2 agreement. A P value < 0.05 was considered statistically significant.DSCs for the qDESS-trained model, 0.79-0.93, were higher than those for the OAI-DESS-trained model, 0.59-0.79. T2 and volume CCCs for the qDESS-trained model, 0.75-0.98 and 0.47-0.95, were higher than respective CCCs for the OAI-DESS-trained model, 0.35-0.90 and 0.13-0.84. Bland-Altman 95% limits of agreement for superficial and deep cartilage T2 were lower for the qDESS-trained model, ±2.4 msec and ±4.0 msec, than the OAI-DESS-trained model, ±4.4 msec and ±5.2 msec.RESULTSDSCs for the qDESS-trained model, 0.79-0.93, were higher than those for the OAI-DESS-trained model, 0.59-0.79. T2 and volume CCCs for the qDESS-trained model, 0.75-0.98 and 0.47-0.95, were higher than respective CCCs for the OAI-DESS-trained model, 0.35-0.90 and 0.13-0.84. Bland-Altman 95% limits of agreement for superficial and deep cartilage T2 were lower for the qDESS-trained model, ±2.4 msec and ±4.0 msec, than the OAI-DESS-trained model, ±4.4 msec and ±5.2 msec.The qDESS-trained model may generalize well to independent qDESS datasets regardless of MR scanner, acquisition parameters, and subject population.DATA CONCLUSIONThe qDESS-trained model may generalize well to independent qDESS datasets regardless of MR scanner, acquisition parameters, and subject population.1 TECHNICAL EFFICACY: Stage 1.EVIDENCE LEVEL1 TECHNICAL EFFICACY: Stage 1.
Background Deep learning (DL)‐based automatic segmentation models can expedite manual segmentation yet require resource‐intensive fine‐tuning before deployment on new datasets. The generalizability of DL methods to new datasets without fine‐tuning is not well characterized. Purpose Evaluate the generalizability of DL‐based models by deploying pretrained models on independent datasets varying by MR scanner, acquisition parameters, and subject population. Study Type Retrospective based on prospectively acquired data. Population Overall test dataset: 59 subjects (26 females); Study 1: 5 healthy subjects (zero females), Study 2: 8 healthy subjects (eight females), Study 3: 10 subjects with osteoarthritis (eight females), Study 4: 36 subjects with various knee pathology (10 females). Field Strength/Sequence A 3‐T, quantitative double‐echo steady state (qDESS). Assessment Four annotators manually segmented knee cartilage. Each reader segmented one of four qDESS datasets in the test dataset. Two DL models, one trained on qDESS data and another on Osteoarthritis Initiative (OAI)‐DESS data, were assessed. Manual and automatic segmentations were compared by quantifying variations in segmentation accuracy, volume, and T2 relaxation times for superficial and deep cartilage. Statistical Tests Dice similarity coefficient (DSC) for segmentation accuracy. Lin's concordance correlation coefficient (CCC), Wilcoxon rank‐sum tests, root‐mean‐squared error‐coefficient‐of‐variation to quantify manual vs. automatic T2 and volume variations. Bland–Altman plots for manual vs. automatic T2 agreement. A P value < 0.05 was considered statistically significant. Results DSCs for the qDESS‐trained model, 0.79–0.93, were higher than those for the OAI‐DESS‐trained model, 0.59–0.79. T2 and volume CCCs for the qDESS‐trained model, 0.75–0.98 and 0.47–0.95, were higher than respective CCCs for the OAI‐DESS‐trained model, 0.35–0.90 and 0.13–0.84. Bland–Altman 95% limits of agreement for superficial and deep cartilage T2 were lower for the qDESS‐trained model, ±2.4 msec and ±4.0 msec, than the OAI‐DESS‐trained model, ±4.4 msec and ±5.2 msec. Data Conclusion The qDESS‐trained model may generalize well to independent qDESS datasets regardless of MR scanner, acquisition parameters, and subject population. Evidence Level 1 Technical Efficacy Stage 1
BackgroundDeep learning (DL)‐based automatic segmentation models can expedite manual segmentation yet require resource‐intensive fine‐tuning before deployment on new datasets. The generalizability of DL methods to new datasets without fine‐tuning is not well characterized.PurposeEvaluate the generalizability of DL‐based models by deploying pretrained models on independent datasets varying by MR scanner, acquisition parameters, and subject population.Study TypeRetrospective based on prospectively acquired data.PopulationOverall test dataset: 59 subjects (26 females); Study 1: 5 healthy subjects (zero females), Study 2: 8 healthy subjects (eight females), Study 3: 10 subjects with osteoarthritis (eight females), Study 4: 36 subjects with various knee pathology (10 females).Field Strength/SequenceA 3‐T, quantitative double‐echo steady state (qDESS).AssessmentFour annotators manually segmented knee cartilage. Each reader segmented one of four qDESS datasets in the test dataset. Two DL models, one trained on qDESS data and another on Osteoarthritis Initiative (OAI)‐DESS data, were assessed. Manual and automatic segmentations were compared by quantifying variations in segmentation accuracy, volume, and T2 relaxation times for superficial and deep cartilage.Statistical TestsDice similarity coefficient (DSC) for segmentation accuracy. Lin's concordance correlation coefficient (CCC), Wilcoxon rank‐sum tests, root‐mean‐squared error‐coefficient‐of‐variation to quantify manual vs. automatic T2 and volume variations. Bland–Altman plots for manual vs. automatic T2 agreement. A P value < 0.05 was considered statistically significant.ResultsDSCs for the qDESS‐trained model, 0.79–0.93, were higher than those for the OAI‐DESS‐trained model, 0.59–0.79. T2 and volume CCCs for the qDESS‐trained model, 0.75–0.98 and 0.47–0.95, were higher than respective CCCs for the OAI‐DESS‐trained model, 0.35–0.90 and 0.13–0.84. Bland–Altman 95% limits of agreement for superficial and deep cartilage T2 were lower for the qDESS‐trained model, ±2.4 msec and ±4.0 msec, than the OAI‐DESS‐trained model, ±4.4 msec and ±5.2 msec.Data ConclusionThe qDESS‐trained model may generalize well to independent qDESS datasets regardless of MR scanner, acquisition parameters, and subject population.Evidence Level1Technical EfficacyStage 1
Author Desai, Arjun D.
MacKay, James W.
Gold, Garry E.
Boutin, Robert D.
Crowder, Hollis A.
Black, Marianne S.
Rubin, Elka B.
Mazzoli, Valentina
Schmidt, Andrew M.
Kogan, Feliks
Chaudhari, Akshay S.
Lu, Quin
Watkins, Lauren E.
Hargreaves, Brian A.
AuthorAffiliation 2. Electrical Engineering, Stanford University, Palo Alto, CA, United States
8. Biomedical Data Science, Stanford University, Palo Alto, CA, United States
4. Mechanical Engineering, Stanford University, Palo Alto, CA, United States
3. Bioengineering, Stanford University, Palo Alto, CA, United States
5. Philips Healthcare North America, Gainesville, FL, United States
1. Department of Radiology, Stanford University, Palo Alto, CA, United States
6. Department of Radiology, University of Cambridge, Cambridge, United Kingdom
7. Norwich Medical School, University of East Anglia, Norwich, United Kingdom
AuthorAffiliation_xml – name: 3. Bioengineering, Stanford University, Palo Alto, CA, United States
– name: 8. Biomedical Data Science, Stanford University, Palo Alto, CA, United States
– name: 5. Philips Healthcare North America, Gainesville, FL, United States
– name: 6. Department of Radiology, University of Cambridge, Cambridge, United Kingdom
– name: 7. Norwich Medical School, University of East Anglia, Norwich, United Kingdom
– name: 4. Mechanical Engineering, Stanford University, Palo Alto, CA, United States
– name: 2. Electrical Engineering, Stanford University, Palo Alto, CA, United States
– name: 1. Department of Radiology, Stanford University, Palo Alto, CA, United States
Author_xml – sequence: 1
  givenname: Andrew M.
  orcidid: 0000-0003-3826-6122
  surname: Schmidt
  fullname: Schmidt, Andrew M.
  email: aschmid2@stanford.edu
  organization: Stanford University
– sequence: 2
  givenname: Arjun D.
  surname: Desai
  fullname: Desai, Arjun D.
  organization: Stanford University
– sequence: 3
  givenname: Lauren E.
  orcidid: 0000-0003-3592-4089
  surname: Watkins
  fullname: Watkins, Lauren E.
  organization: Stanford University
– sequence: 4
  givenname: Hollis A.
  orcidid: 0000-0003-3663-5799
  surname: Crowder
  fullname: Crowder, Hollis A.
  organization: Stanford University
– sequence: 5
  givenname: Marianne S.
  orcidid: 0000-0002-2564-9071
  surname: Black
  fullname: Black, Marianne S.
  organization: Stanford University
– sequence: 6
  givenname: Valentina
  orcidid: 0000-0002-6700-8424
  surname: Mazzoli
  fullname: Mazzoli, Valentina
  organization: Stanford University
– sequence: 7
  givenname: Elka B.
  orcidid: 0000-0003-0175-7657
  surname: Rubin
  fullname: Rubin, Elka B.
  organization: Stanford University
– sequence: 8
  givenname: Quin
  orcidid: 0000-0001-9526-1614
  surname: Lu
  fullname: Lu, Quin
  organization: Philips Healthcare North America
– sequence: 9
  givenname: James W.
  orcidid: 0000-0001-7558-3800
  surname: MacKay
  fullname: MacKay, James W.
  organization: University of East Anglia
– sequence: 10
  givenname: Robert D.
  surname: Boutin
  fullname: Boutin, Robert D.
  organization: Stanford University
– sequence: 11
  givenname: Feliks
  surname: Kogan
  fullname: Kogan, Feliks
  organization: Stanford University
– sequence: 12
  givenname: Garry E.
  surname: Gold
  fullname: Gold, Garry E.
  organization: Stanford University
– sequence: 13
  givenname: Brian A.
  surname: Hargreaves
  fullname: Hargreaves, Brian A.
  organization: Stanford University
– sequence: 14
  givenname: Akshay S.
  orcidid: 0000-0002-3667-6796
  surname: Chaudhari
  fullname: Chaudhari, Akshay S.
  organization: Stanford University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35852498$$D View this record in MEDLINE/PubMed
BookMark eNp9kc-L1DAcxYusuD_04h8gAS8idE3SpE0uwjDqujKLsOo5pO23nQxpMiatWg_-7WbsuuginhLI5z3eyzvNjpx3kGWPCT4nGNMXuyGYcyqKkt_LTginNKdclEfpjnmRE4Gr4-w0xh3GWErGH2THBRecMilOsh8X4CBoa77r2lgzzsh36BXAHm1AB2dcjz5AP4Ab9Wi8Qyvb-2DG7RBR5wNaTaMf9AgtWsUIMR7Ag8Nah9FY3QO68mG_9db3M9KuRVfXl-garP7mBxjD_DC732kb4dHNeZZ9evP64_ptvnl_cblebfKGMcHzTrSFqHDZSiIx17KoGSllXTKOOa8L0VTQQoNL1mlKZVXrjjEquoo3JddY6uIse7n47qd6gLZJMVNptQ9m0GFWXhv194szW9X7L0oKJpkgyeDZjUHwnyeIoxpMbMBa7cBPUdFSkkoIQWRCn95Bd34KLtVTtEr_jgtBD9STPxPdRvk9TQKeL0ATfIwBuluEYHXYXR12V792TzC-AzdmWSy1MfbfErJIvhoL83_M1bs02qL5CSBOwh4
CitedBy_id crossref_primary_10_1016_j_acra_2025_04_072
crossref_primary_10_1007_s00117_023_01252_2
crossref_primary_10_1016_j_imed_2024_12_002
crossref_primary_10_1002_jmri_29710
crossref_primary_10_1002_jmri_29689
crossref_primary_10_1002_jmri_29647
crossref_primary_10_1016_j_joca_2023_10_005
crossref_primary_10_1186_s13018_024_04680_5
crossref_primary_10_1016_j_semarthrit_2025_152652
crossref_primary_10_1002_jmri_28393
crossref_primary_10_1007_s00256_024_04734_z
crossref_primary_10_1007_s00256_025_04922_5
crossref_primary_10_1007_s10334_024_01173_8
crossref_primary_10_1002_jmri_29431
crossref_primary_10_1016_j_csm_2024_08_004
crossref_primary_10_1016_j_jocmr_2024_101082
crossref_primary_10_1109_ACCESS_2025_3569158
Cites_doi 10.1016/j.joca.2009.06.003
10.1016/j.mri.2016.12.018
10.1002/mrm.27045
10.1002/jmri.24217
10.1038/s41597-022-01255-z
10.1002/jmri.24313
10.1002/jmri.25883
10.1136/annrheumdis-2014-205310
10.1002/mrm.1910070105
10.1016/j.joca.2011.10.003
10.1097/BOR.0000000000000479
10.1007/s10462-020-09924-4
10.1002/jmri.26991
10.1016/j.joca.2021.02.563
10.1002/mrm.22036
10.1002/jmri.27331
10.1016/j.aanat.2021.151866
10.1148/ryai.2021200078
10.1002/jor.24994
10.1002/art.34453
10.1016/j.joca.2016.09.015
10.1002/acr.24539
10.1148/radiology.205.2.9356643
10.1148/radiol.2523090028
10.1002/jmri.26246
10.1016/j.media.2018.11.009
10.1007/s00330-019-06542-9
10.1177/19476035211042406
10.1016/j.joca.2011.05.004
10.1007/s10334-020-00889-7
10.1007/s10334-016-0532-9
10.1148/radiology.214.1.r00ja15259
10.1148/radiol.2018172322
10.1007/s10334-021-00934-z
10.1186/s12880-022-00793-7
ContentType Journal Article
Copyright 2022 International Society for Magnetic Resonance in Medicine.
2023 International Society for Magnetic Resonance in Medicine
Copyright_xml – notice: 2022 International Society for Magnetic Resonance in Medicine.
– notice: 2023 International Society for Magnetic Resonance in Medicine
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TK
8FD
FR3
K9.
P64
7X8
5PM
DOI 10.1002/jmri.28365
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1522-2586
EndPage 1039
ExternalDocumentID PMC9849481
35852498
10_1002_jmri_28365
JMRI28365
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institutes of Health
  funderid: P41 EB015891; K24 AR062068; R01‐AR074492; R01 EB002524; R00 EB022634; NIH R01‐AR077604
– fundername: National Science and Engineering Graduate Fellowship
– fundername: GE Healthcare
– fundername: National Science Foundation
  funderid: GRFP‐DGE 1656518
– fundername: Wu Tsai Human Performance Alliance and Stanford Medicine Precision Health and Integrated Diagnostics
– fundername: NIH HHS
  grantid: K24 AR062068
– fundername: NIH HHS
  grantid: R01-AR074492
– fundername: NIBIB NIH HHS
  grantid: K99 EB022634
– fundername: NIBIB NIH HHS
  grantid: R00 EB022634
– fundername: NIH HHS
  grantid: P41 EB015891
– fundername: NIAMS NIH HHS
  grantid: K24 AR062068
– fundername: NIH HHS
  grantid: R00 EB022634
– fundername: NIH HHS
  grantid: NIH R01-AR077604
– fundername: NIBIB NIH HHS
  grantid: P41 EB015891
– fundername: NIAMS NIH HHS
  grantid: R01 AR077604
GroupedDBID ---
-DZ
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TWZ
UB1
V2E
V8K
V9Y
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
XG1
XV2
ZXP
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TK
8FD
FR3
K9.
P64
7X8
5PM
ID FETCH-LOGICAL-c4485-f8d38706d91905a93b4169b645055b38c7edec064fa2297baf4428f75c65a09a3
IEDL.DBID DRFUL
ISICitedReferencesCount 21
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000827105300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1053-1807
1522-2586
IngestDate Tue Nov 04 02:05:56 EST 2025
Sun Nov 09 14:02:02 EST 2025
Sat Nov 29 14:26:00 EST 2025
Mon Jul 21 06:04:45 EDT 2025
Sat Nov 29 06:08:43 EST 2025
Tue Nov 18 20:53:18 EST 2025
Wed Jan 22 16:23:10 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords segmentation
machine learning
osteoarthritis
cartilage
qMRI
Language English
License 2022 International Society for Magnetic Resonance in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4485-f8d38706d91905a93b4169b645055b38c7edec064fa2297baf4428f75c65a09a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6700-8424
0000-0003-3663-5799
0000-0001-9526-1614
0000-0001-7558-3800
0000-0003-3592-4089
0000-0003-0175-7657
0000-0002-3667-6796
0000-0003-3826-6122
0000-0002-2564-9071
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/9849481
PMID 35852498
PQID 2785203829
PQPubID 1006400
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9849481
proquest_miscellaneous_2691788819
proquest_journals_2785203829
pubmed_primary_35852498
crossref_primary_10_1002_jmri_28365
crossref_citationtrail_10_1002_jmri_28365
wiley_primary_10_1002_jmri_28365_JMRI28365
PublicationCentury 2000
PublicationDate April 2023
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: April 2023
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: Nashville
PublicationSubtitle JMRI
PublicationTitle Journal of magnetic resonance imaging
PublicationTitleAlternate J Magn Reson Imaging
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2013; 3
2009; 62
2019; 52
2017; 25
2000; 214
2021; 29
2018; 288
2018; 80
2022; 22
2009; 252
2011; 19
2018; 47
2021; 13
1997; 205
2021; 54
2021; 10
2022; 240
2021; 34
2013; 38
2020; 52
2020; 30
2021
2020
2017; 38
2021; 39
2022; 9
1988; 7
2019; 49
2019
2018; 30
2022; 74
2014; 39
2016; 29
2014; 73
2012; 64
2012; 20
2009; 17
e_1_2_7_6_1
Desai AD (e_1_2_7_26_1) 2021
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
Chaudhari AS (e_1_2_7_23_1) 2020
e_1_2_7_19_1
e_1_2_7_18_1
Desai AD (e_1_2_7_33_1) 2019
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Desai AD (e_1_2_7_13_1) 2019
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
Matzat SJ (e_1_2_7_7_1) 2013; 3
e_1_2_7_39_1
35959715 - J Magn Reson Imaging. 2023 Apr;57(4):1040-1041
References_xml – volume: 54
  start-page: 2445
  year: 2021
  end-page: 2494
  article-title: From classical to deep learning: Review on cartilage and bone segmentation techniques in knee osteoarthritis research
  publication-title: Artif Intell Rev
– volume: 29
  start-page: 849
  year: 2021
  end-page: 858
  article-title: Assessment of quantitative [ F]sodium fluoride PET measures of knee subchondral bone perfusion and mineralization in osteoarthritic and healthy subjects
  publication-title: Osteoarthr Cartil
– volume: 13
  start-page: 747S
  year: 2021
  end-page: 756S
  article-title: Open source software for automatic subregional assessment of knee cartilage degradation using quantitative T2 relaxometry and deep learning
  publication-title: Cartilage
– volume: 54
  start-page: 357
  year: 2021
  end-page: 371
  article-title: Prospective deployment of deep learning in MRI: A framework for important considerations, challenges, and recommendations for best practices
  publication-title: J Magn Reson Imaging
– volume: 29
  start-page: 207
  year: 2016
  end-page: 221
  article-title: Segmentation of joint and musculoskeletal tissue in the study of arthritis
  publication-title: MAGMA
– volume: 30
  start-page: 2231
  year: 2020
  end-page: 2240
  article-title: Time‐saving opportunities in knee osteoarthritis: T mapping and structural imaging of the knee using a single 5‐min MRI scan
  publication-title: Eur Radiol
– volume: 22
  start-page: 69
  year: 2022
  article-title: Transfer learning for medical image classification: A literature review
  publication-title: BMC Med Imaging
– volume: 20
  start-page: 13
  year: 2012
  end-page: 21
  article-title: The diagnostic performance of MRI in osteoarthritis: A systematic review and meta‐analysis
  publication-title: Osteoarthr Cartil
– volume: 19
  start-page: 990
  year: 2011
  end-page: 1002
  article-title: Evolution of semi‐quantitative whole joint assessment of knee OA: MOAKS (MRI Osteoarthritis Knee Score)
  publication-title: Osteoarthr Cartil
– year: 2021
– volume: 205
  start-page: 546
  year: 1997
  end-page: 550
  article-title: Spatial variation of T2 in human articular cartilage
  publication-title: Radiology
– volume: 38
  start-page: 991
  year: 2013
  end-page: 1008
  article-title: Quantitative MRI of articular cartilage and its clinical applications
  publication-title: J Magn Reson Imaging
– volume: 7
  start-page: 35
  year: 1988
  end-page: 42
  article-title: A new steady‐state imaging sequence for simultaneous acquisition of two MR images with clearly different contrasts
  publication-title: Magn Reson Med
– volume: 214
  start-page: 259
  year: 2000
  end-page: 266
  article-title: Human articular cartilage: Influence of aging and early symptomatic degeneration on the spatial variation of T2‐‐preliminary findings at 3 T
  publication-title: Radiology
– volume: 25
  start-page: 513
  year: 2017
  end-page: 520
  article-title: Cluster analysis of quantitative MRI T and T relaxation times of cartilage identifies differences between healthy and ACL‐injured individuals at 3T
  publication-title: Osteoarthr Cartil
– volume: 64
  start-page: 1697
  year: 2012
  end-page: 1707
  article-title: Osteoarthritis: A disease of the joint as an organ
  publication-title: Arthritis Rheum
– volume: 52
  start-page: 1321
  year: 2020
  end-page: 1339
  article-title: Rapid knee MRI acquisition and analysis techniques for imaging osteoarthritis
  publication-title: J Magn Reson Imaging
– volume: 49
  start-page: 400
  year: 2019
  end-page: 410
  article-title: 3D convolutional neural networks for detection and severity staging of meniscus and PFJ cartilage morphological degenerative changes in osteoarthritis and anterior cruciate ligament subjects
  publication-title: J Magn Reson Imaging
– volume: 62
  start-page: 544
  year: 2009
  end-page: 549
  article-title: Rapid estimation of cartilage T2 based on double echo at steady state (DESS) with 3 tesla
  publication-title: Magn Reson Med
– volume: 34
  start-page: 859
  year: 2021
  end-page: 875
  article-title: Automatic knee cartilage and bone segmentation using multi‐stage convolutional neural networks: Data from the osteoarthritis initiative
  publication-title: MAGMA
– volume: 38
  start-page: 63
  year: 2017
  end-page: 70
  article-title: A simple analytic method for estimating T2 in the knee from DESS
  publication-title: Magn Reson Imaging
– volume: 10
  issue: 3
  year: 2021
  article-title: The international workshop on osteoarthritis imaging knee MRI segmentation challenge: A multi‐institute evaluation and analysis framework on a standardized dataset
  publication-title: Radiol Artif Intell
– volume: 47
  start-page: 1328
  year: 2018
  end-page: 1341
  article-title: Five‐minute knee MRI for simultaneous morphometry and T relaxometry of cartilage and meniscus and for semiquantitative radiological assessment using double‐echo in steady‐state at 3T
  publication-title: J Magn Reson Imaging
– volume: 73
  start-page: 1289
  year: 2014
  end-page: 1300
  article-title: Imaging research results from the Osteoarthritis Initiative (OAI): A review and lessons learned 10 years after start of enrolment
  publication-title: Ann Rheum Dis
– volume: 240
  year: 2022
  article-title: Local MRI‐based measures of thigh adipose tissue derived from fully automated deep convolutional neural network‐based segmentation show a comparable responsiveness to bidirectional change in body weight as from quality controlled manual segmentation
  publication-title: Ann Anat
– year: 2019
  article-title: Technical considerations for semantic segmentation in MRI using convolutional neural networks
  publication-title: arXiv
– volume: 39
  start-page: 972
  year: 2014
  end-page: 977
  article-title: Quantitative measurement of femoral condyle cartilage in the knee by MRI: Validation study by multireaders
  publication-title: J Magn Reson Imaging
– volume: 30
  start-page: 160
  year: 2018
  end-page: 167
  article-title: Epidemiology of osteoarthritis: Literature update
  publication-title: Curr Opin Rheumatol
– volume: 3
  start-page: 162
  year: 2013
  end-page: 174
  article-title: Quantitative MRI techniques of cartilage composition
  publication-title: Quant Imaging Med Surg
– year: 2020
– volume: 74
  start-page: 929
  year: 2022
  end-page: 936
  article-title: A deep learning automated segmentation algorithm accurately detects differences in longitudinal cartilage thickness loss ‐ data from the FNIH biomarkers study of the osteoarthritis initiative
  publication-title: Arthritis Care Res (Hoboken)
– volume: 288
  start-page: 177
  year: 2018
  end-page: 185
  article-title: Use of 2D U‐net convolutional neural networks for automated cartilage and meniscus segmentation of knee MR imaging data to determine Relaxometry and morphometry
  publication-title: Radiology
– volume: 252
  start-page: 486
  year: 2009
  end-page: 495
  article-title: Knee joint: Comprehensive assessment with 3D isotropic resolution fast spin‐echo MR imaging‐‐diagnostic performance compared with that of conventional MR imaging at 3.0 T
  publication-title: Radiology
– volume: 52
  start-page: 109
  year: 2019
  end-page: 118
  article-title: Automated segmentation of knee bone and cartilage combining statistical shape knowledge and convolutional neural networks: Data from the osteoarthritis initiative
  publication-title: Med Image Anal
– volume: 9
  start-page: 152
  year: 2022
  article-title: fastMRI+, clinical pathology annotations for knee and brain fully sampled magnetic resonance imaging data
  publication-title: Sci Data
– volume: 17
  start-page: 1589
  year: 2009
  end-page: 1597
  article-title: Intra‐ and inter‐observer reproducibility of volume measurement of knee cartilage segmented from the OAI MR image set using a novel semi‐automated segmentation method
  publication-title: Osteoarthr Cartil
– volume: 39
  start-page: 2340
  year: 2021
  end-page: 2352
  article-title: Characterizing the transient response of knee cartilage to running: Decreases in cartilage T of female recreational runners
  publication-title: J Orthop Res
– year: 2019
– volume: 34
  start-page: 337
  year: 2021
  end-page: 354
  article-title: Accuracy and longitudinal reproducibility of quantitative femorotibial cartilage measures derived from automated U‐net‐based segmentation of two different MRI contrasts: Data from the osteoarthritis initiative healthy reference cohort
  publication-title: MAGMA
– volume: 80
  start-page: 529
  year: 2018
  end-page: 537
  article-title: Simultaneous bilateral‐knee MR imaging
  publication-title: Magn Reson Med
– ident: e_1_2_7_41_1
  doi: 10.1016/j.joca.2009.06.003
– ident: e_1_2_7_30_1
  doi: 10.1016/j.mri.2016.12.018
– ident: e_1_2_7_27_1
  doi: 10.1002/mrm.27045
– ident: e_1_2_7_40_1
  doi: 10.1002/jmri.24217
– ident: e_1_2_7_39_1
  doi: 10.1038/s41597-022-01255-z
– ident: e_1_2_7_6_1
  doi: 10.1002/jmri.24313
– ident: e_1_2_7_29_1
  doi: 10.1002/jmri.25883
– ident: e_1_2_7_10_1
  doi: 10.1136/annrheumdis-2014-205310
– ident: e_1_2_7_28_1
  doi: 10.1002/mrm.1910070105
– ident: e_1_2_7_5_1
  doi: 10.1016/j.joca.2011.10.003
– volume-title: Thirty‐fifth Conference on Neural Information Processing Systems Datasets and Benchmarks (Round 2)
  year: 2021
  ident: e_1_2_7_26_1
– ident: e_1_2_7_3_1
  doi: 10.1097/BOR.0000000000000479
– ident: e_1_2_7_14_1
  doi: 10.1007/s10462-020-09924-4
– ident: e_1_2_7_4_1
  doi: 10.1002/jmri.26991
– ident: e_1_2_7_25_1
  doi: 10.1016/j.joca.2021.02.563
– ident: e_1_2_7_31_1
  doi: 10.1002/mrm.22036
– ident: e_1_2_7_21_1
  doi: 10.1002/jmri.27331
– ident: e_1_2_7_38_1
  doi: 10.1016/j.aanat.2021.151866
– ident: e_1_2_7_15_1
  doi: 10.1148/ryai.2021200078
– ident: e_1_2_7_24_1
  doi: 10.1002/jor.24994
– ident: e_1_2_7_2_1
  doi: 10.1002/art.34453
– volume: 3
  start-page: 162
  year: 2013
  ident: e_1_2_7_7_1
  article-title: Quantitative MRI techniques of cartilage composition
  publication-title: Quant Imaging Med Surg
– volume-title: Proceedings of the 27th Annual Meeting of ISMRM
  year: 2019
  ident: e_1_2_7_33_1
– ident: e_1_2_7_34_1
  doi: 10.1016/j.joca.2016.09.015
– year: 2019
  ident: e_1_2_7_13_1
  article-title: Technical considerations for semantic segmentation in MRI using convolutional neural networks
  publication-title: arXiv
– volume-title: Proceedings of the 27th Annual Meeting of ISMRM (virtual)
  year: 2020
  ident: e_1_2_7_23_1
– ident: e_1_2_7_16_1
  doi: 10.1002/acr.24539
– ident: e_1_2_7_8_1
  doi: 10.1148/radiology.205.2.9356643
– ident: e_1_2_7_37_1
  doi: 10.1148/radiol.2523090028
– ident: e_1_2_7_12_1
  doi: 10.1002/jmri.26246
– ident: e_1_2_7_17_1
  doi: 10.1016/j.media.2018.11.009
– ident: e_1_2_7_32_1
  doi: 10.1007/s00330-019-06542-9
– ident: e_1_2_7_35_1
  doi: 10.1177/19476035211042406
– ident: e_1_2_7_36_1
  doi: 10.1016/j.joca.2011.05.004
– ident: e_1_2_7_20_1
  doi: 10.1007/s10334-020-00889-7
– ident: e_1_2_7_11_1
  doi: 10.1007/s10334-016-0532-9
– ident: e_1_2_7_9_1
  doi: 10.1148/radiology.214.1.r00ja15259
– ident: e_1_2_7_18_1
  doi: 10.1148/radiol.2018172322
– ident: e_1_2_7_19_1
  doi: 10.1007/s10334-021-00934-z
– ident: e_1_2_7_22_1
  doi: 10.1186/s12880-022-00793-7
– reference: 35959715 - J Magn Reson Imaging. 2023 Apr;57(4):1040-1041
SSID ssj0009945
Score 2.5245414
Snippet Background Deep learning (DL)‐based automatic segmentation models can expedite manual segmentation yet require resource‐intensive fine‐tuning before deployment...
Deep learning (DL)-based automatic segmentation models can expedite manual segmentation yet require resource-intensive fine-tuning before deployment on new...
BackgroundDeep learning (DL)‐based automatic segmentation models can expedite manual segmentation yet require resource‐intensive fine‐tuning before deployment...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1029
SubjectTerms Accuracy
Algorithms
Arthritis
Cartilage
Cartilage diseases
Cartilage, Articular - pathology
Coefficient of variation
Correlation coefficient
Correlation coefficients
Data acquisition
Datasets
Deep Learning
Female
Females
Field strength
Humans
Knee
Machine learning
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Mathematical models
Osteoarthritis
Osteoarthritis, Knee - pathology
Parameters
Population studies
qMRI
Retrospective Studies
Scanners
Segmentation
Statistical analysis
Statistical tests
Tuning
Variation
Title Generalizability of Deep Learning Segmentation Algorithms for Automated Assessment of Cartilage Morphology and MRI Relaxometry
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmri.28365
https://www.ncbi.nlm.nih.gov/pubmed/35852498
https://www.proquest.com/docview/2785203829
https://www.proquest.com/docview/2691788819
https://pubmed.ncbi.nlm.nih.gov/PMC9849481
Volume 57
WOSCitedRecordID wos000827105300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1522-2586
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009945
  issn: 1053-1807
  databaseCode: DRFUL
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9tHUK88P0RGJMRvICULbGT2JZ4qTYqQHRCg0l9i5zY7oraZEpTxF742zknaUo1hIR4i-RLYvnu7N_Z598BvOI8MzLXzKc2s37EmfYV2rFvQqG5sTJPYtUUm-Cnp2IykZ934O36LkzLD9FvuDnPaOZr5-AqWx5tSEO_LarZIS6OSbwLexQNNx7A3snZ6PzThnRXNkWKEUIwPxQB7-lJ6dHm7e0F6RrKvJ4s-TuIbVah0Z3_6_9duN2hTzJszeUe7JjiPtwcd-frD-Bnx0LtUr1c0uwVKS05MeaSdDysU_LFTBfdfaWCDOfTsprVF4slQfBLhqu6RARsNBn2hJ_uC8fOPuc4c5FxiXptdvKJKjQZn30gLh3vR7kwdXX1EM5H774ev_e7Cg1-jmFd7FuhmTso1RJxRawkyxDfySyJEFfFGRM5N9rkiHqsolTyTNkIwx3LY2cCgVTsEQyKsjBPgJicW6MirSJBoyxMFOU2l4FiVoeB4JkHr9dqSvOOvtxV0ZinLfEyTd2Aps2AevCyl71sSTv-KLW_1nbaOe4ypVzENGCCSg9e9M3ocu4cRRWmXKFMgjGuEIilPHjcGkf_G4bhF0a0wgO-ZTa9gKPz3m4pZhcNrbcUjqon9OBNYzZ_6Xn6EdXTPD39F-FncIsiJGtzzvdhUFcr8xxu5N_r2bI6gF0-EQedC_0CsuQi3Q
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD6CDQEv3C-BAUbwAlJY4lxsP1Yb1QZthcYm7S1yYrsrapMpTRF74bdznHgp1RAS4i2ST272d-zv2MefAd4ylmtRqMinJjd-zCLlS8Sxr0OumDaiSBPZHjbBJhN-eiq-uNwcuxem04foJ9ysZ7T9tXVwOyG9u1YN_baoZx9wdEyT67AdI44Q4Nv7R8OT0Vp1V7SnFCOHiPyQB6zXJ6W767s3R6QrNPNqtuTvLLYdhoZ3__MH7sEdxz_JoAPMfbimywdwc-xW2B_CT6dDbZO9bNrsBakM2df6nDgl1in5qqcLt2OpJIP5tKpnzdliSZD-ksGqqZADa0UGveSnfcKeRegc-y4yrrBl27l8IktFxkeHxCbk_agWuqkvHsHJ8OPx3oHvzmjwCwzsEt9wFdmlUiWQWSRSRDkyPJGnMTKrJI94wbTSBfIeIykVLJcmxoDHsMSCIBAyegxbZVXqp0B0wYyWsZIxp3EeppIyU4hARkaFAWe5B-8u2ykrnIC5PUdjnnXSyzSzFZq1FerBm972vJPt-KPVzmVzZ851lxllPKFBxKnw4HVfjE5nV1JkqasV2qQY5XKObMqDJx06-tdEGIBhTMs9YBu46Q2soPdmSTk7a4W9BbdiPaEH71vc_OXLs0_YPO3Vs38xfgW3Do7Ho2x0OPn8HG5TJGxdFtIObDX1Sr-AG8X3ZrasXzpP-gUnJSXm
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9BhyZe-P4IDDCCF5CyJc6H7cdqpWKwVtNg0t4iJ7a7ojap0haxF_52zomXUg0hId4i-fLlu7N_Z59_B_CWsVyLQkU-NbnxYxYpX6Id-zrkimkjijSRTbEJNh7z83Nx4nJz7FmYlh-iW3CzntGM19bB9UKZgw1r6Ld5Pd3H2TFNbsJObKvI9GBncDo8O96w7oqmSjFiiMgPecA6flJ6sLl7e0a6BjOvZ0v-jmKbaWh49z9_4B7ccfiT9FuDuQ83dPkAdkduh_0h_HQ81DbZy6bNXpLKkIHWC-KYWCfki57M3YmlkvRnk6qeri7mS4Lwl_TXqwoxsFak31F-2iccWgud4dhFRhVqtlnLJ7JUZHR6RGxC3o9qrlf15SM4G374evjRdzUa_AIDu8Q3XEV2q1QJRBaJFFGOCE_kaYzIKskjXjCtdIG4x0hKBculiTHgMSyxRhAIGT2GXlmV-ikQXTCjZaxkzGmch6mkzBQikJFRYcBZ7sG7Kz1lhSMwt3U0ZllLvUwz26FZ06EevOlkFy1txx-l9q7UnTnXXWaU8YQGEafCg9ddMzqd3UmRpa7WKJNilMs5oikPnrTW0b0mwgAMY1ruAduym07AEnpvt5TTi4bYW3BL1hN68L6xm798efYJ1dNcPfsX4VewezIYZsdH48_P4TZFvNYmIe1Bb1Wv9Qu4VXxfTZf1S-dIvwB-IiVh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generalizability+of+Deep+Learning+Segmentation+Algorithms+for+Automated+Assessment+of+Cartilage+Morphology+and+MRI+Relaxometry&rft.jtitle=Journal+of+magnetic+resonance+imaging&rft.au=Schmidt%2C+Andrew+M.&rft.au=Desai%2C+Arjun+D.&rft.au=Watkins%2C+Lauren+E.&rft.au=Crowder%2C+Hollis&rft.date=2023-04-01&rft.issn=1053-1807&rft.eissn=1522-2586&rft.volume=57&rft.issue=4&rft.spage=1029&rft.epage=1039&rft_id=info:doi/10.1002%2Fjmri.28365&rft_id=info%3Apmid%2F35852498&rft.externalDocID=PMC9849481
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-1807&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-1807&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-1807&client=summon