Nonparametric Estimation of Transition Probabilities for a General Progressive Multi-State Model Under Cross-Sectional Sampling

Nonparametric estimation of the transition probability matrix of a progressive multi-state model is considered under cross-sectional sampling. Two different estimators adapted to possibly right-censored and left-truncated data are proposed. The estimators require full retrospective information befor...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Biometrics Ročník 74; číslo 4; s. 1203 - 1212
Hlavní autoři: de Uña-Álvarez, Jacobo, Mandel, Micha
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Wiley-Blackwell 01.12.2018
Blackwell Publishing Ltd
Témata:
ISSN:0006-341X, 1541-0420, 1541-0420
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Nonparametric estimation of the transition probability matrix of a progressive multi-state model is considered under cross-sectional sampling. Two different estimators adapted to possibly right-censored and left-truncated data are proposed. The estimators require full retrospective information before the truncation time, which, when exploited, increases efficiency. They are obtained as differences between two survival functions constructed for sub-samples of subjects occupying specific states at a certain time point. Both estimators correct the oversampling of relatively large survival times by using the left-truncation times associated with the cross-sectional observation. Asymptotic results are established, and finite sample performance is investigated through simulations. One of the proposed estimators performs better when there is no censoring, while the second one is strongly recommended with censored data. The new estimators are applied to data on patients in intensive care units (ICUs).
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0006-341X
1541-0420
1541-0420
DOI:10.1111/biom.12874