Relative entropy and the multivariable multidimensional moment problem
Entropy-like functionals on operator algebras have been studied since the pioneering work of von Neumann, Umegaki, Lindblad, and Lieb. The best known are the von Neumann entropy |(rho):=-trace(rhologrho) and a generalization of the Kullback- Leibler distance S(rhoparsigma):=trace(rhologrho-rhologsig...
Saved in:
| Published in: | IEEE transactions on information theory Vol. 52; no. 3; pp. 1052 - 1066 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York, NY
IEEE
01.03.2006
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 0018-9448, 1557-9654 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Entropy-like functionals on operator algebras have been studied since the pioneering work of von Neumann, Umegaki, Lindblad, and Lieb. The best known are the von Neumann entropy |(rho):=-trace(rhologrho) and a generalization of the Kullback- Leibler distance S(rhoparsigma):=trace(rhologrho-rhologsigma), referred to as quantum relative entropy and used to quantify distance between states of a quantum system. The purpose of this paper is to explore | and S as regularizing functionals in seeking solutions to multivariable and multidimensional moment problems. It will be shown that extrema can be effectively constructed via a suitable homotopy. The homotopy approach leads naturally to a further generalization and a description of all the solutions to such moment problems. This is accomplished by a renormalization of a Riemannian metric induced by entropy functionals. As an application, we discuss the inverse problem of describing power spectra which are consistent with second-order statistics, which has been the main motivation behind the present work |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| ISSN: | 0018-9448 1557-9654 |
| DOI: | 10.1109/TIT.2005.864422 |