Relative entropy and the multivariable multidimensional moment problem
Entropy-like functionals on operator algebras have been studied since the pioneering work of von Neumann, Umegaki, Lindblad, and Lieb. The best known are the von Neumann entropy |(rho):=-trace(rhologrho) and a generalization of the Kullback- Leibler distance S(rhoparsigma):=trace(rhologrho-rhologsig...
Uloženo v:
| Vydáno v: | IEEE transactions on information theory Ročník 52; číslo 3; s. 1052 - 1066 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York, NY
IEEE
01.03.2006
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0018-9448, 1557-9654 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Entropy-like functionals on operator algebras have been studied since the pioneering work of von Neumann, Umegaki, Lindblad, and Lieb. The best known are the von Neumann entropy |(rho):=-trace(rhologrho) and a generalization of the Kullback- Leibler distance S(rhoparsigma):=trace(rhologrho-rhologsigma), referred to as quantum relative entropy and used to quantify distance between states of a quantum system. The purpose of this paper is to explore | and S as regularizing functionals in seeking solutions to multivariable and multidimensional moment problems. It will be shown that extrema can be effectively constructed via a suitable homotopy. The homotopy approach leads naturally to a further generalization and a description of all the solutions to such moment problems. This is accomplished by a renormalization of a Riemannian metric induced by entropy functionals. As an application, we discuss the inverse problem of describing power spectra which are consistent with second-order statistics, which has been the main motivation behind the present work |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| ISSN: | 0018-9448 1557-9654 |
| DOI: | 10.1109/TIT.2005.864422 |