oncoPredict: an R package for predicting in vivo or cancer patient drug response and biomarkers from cell line screening data

Cell line drug screening datasets can be utilized for a range of different drug discovery applications from drug biomarker discovery to building translational models of drug response. Previously, we described three separate methodologies to (1) correct for general levels of drug sensitivity to enabl...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Briefings in bioinformatics Ročník 22; číslo 6
Hlavní autoři: Maeser, Danielle, Gruener, Robert F, Huang, Rong Stephanie
Médium: Journal Article
Jazyk:angličtina
Vydáno: England Oxford University Press 05.11.2021
Témata:
ISSN:1467-5463, 1477-4054, 1477-4054
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Cell line drug screening datasets can be utilized for a range of different drug discovery applications from drug biomarker discovery to building translational models of drug response. Previously, we described three separate methodologies to (1) correct for general levels of drug sensitivity to enable drug-specific biomarker discovery, (2) predict clinical drug response in patients and (3) associate these predictions with clinical features to perform in vivo drug biomarker discovery. Here, we unite and update these methodologies into one R package (oncoPredict) to facilitate the development and adoption of these tools. This new OncoPredict R package can be applied to various in vitro and in vivo contexts for drug and biomarker discovery.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Danielle Maeser and Robert F. Gruener authors contributed equally to this work.
ISSN:1467-5463
1477-4054
1477-4054
DOI:10.1093/bib/bbab260