Q-LEARNING WITH CENSORED DATA

We develop methodology for a multistage-decision problem with flexible number of stages in which the rewards are survival times that are subject to censoring. We present a novel Q-learning algorithm that is adjusted for censored data and allows a flexible number of stages. We provide finite sample b...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:The Annals of statistics Ročník 40; číslo 1; s. 529
Hlavní autori: Goldberg, Yair, Kosorok, Michael R
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States 01.02.2012
ISSN:0090-5364
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We develop methodology for a multistage-decision problem with flexible number of stages in which the rewards are survival times that are subject to censoring. We present a novel Q-learning algorithm that is adjusted for censored data and allows a flexible number of stages. We provide finite sample bounds on the generalization error of the policy learned by the algorithm, and show that when the optimal Q-function belongs to the approximation space, the expected survival time for policies obtained by the algorithm converges to that of the optimal policy. We simulate a multistage clinical trial with flexible number of stages and apply the proposed censored-Q-learning algorithm to find individualized treatment regimens. The methodology presented in this paper has implications in the design of personalized medicine trials in cancer and in other life-threatening diseases.
AbstractList We develop methodology for a multistage-decision problem with flexible number of stages in which the rewards are survival times that are subject to censoring. We present a novel Q-learning algorithm that is adjusted for censored data and allows a flexible number of stages. We provide finite sample bounds on the generalization error of the policy learned by the algorithm, and show that when the optimal Q-function belongs to the approximation space, the expected survival time for policies obtained by the algorithm converges to that of the optimal policy. We simulate a multistage clinical trial with flexible number of stages and apply the proposed censored-Q-learning algorithm to find individualized treatment regimens. The methodology presented in this paper has implications in the design of personalized medicine trials in cancer and in other life-threatening diseases.We develop methodology for a multistage-decision problem with flexible number of stages in which the rewards are survival times that are subject to censoring. We present a novel Q-learning algorithm that is adjusted for censored data and allows a flexible number of stages. We provide finite sample bounds on the generalization error of the policy learned by the algorithm, and show that when the optimal Q-function belongs to the approximation space, the expected survival time for policies obtained by the algorithm converges to that of the optimal policy. We simulate a multistage clinical trial with flexible number of stages and apply the proposed censored-Q-learning algorithm to find individualized treatment regimens. The methodology presented in this paper has implications in the design of personalized medicine trials in cancer and in other life-threatening diseases.
We develop methodology for a multistage-decision problem with flexible number of stages in which the rewards are survival times that are subject to censoring. We present a novel Q-learning algorithm that is adjusted for censored data and allows a flexible number of stages. We provide finite sample bounds on the generalization error of the policy learned by the algorithm, and show that when the optimal Q-function belongs to the approximation space, the expected survival time for policies obtained by the algorithm converges to that of the optimal policy. We simulate a multistage clinical trial with flexible number of stages and apply the proposed censored-Q-learning algorithm to find individualized treatment regimens. The methodology presented in this paper has implications in the design of personalized medicine trials in cancer and in other life-threatening diseases.
Author Goldberg, Yair
Kosorok, Michael R
Author_xml – sequence: 1
  givenname: Yair
  surname: Goldberg
  fullname: Goldberg, Yair
  organization: Department of Biostatistics, The University of North Carolina At Chapel Hill, Chapel Hill, NC 27599, U.S.A
– sequence: 2
  givenname: Michael R
  surname: Kosorok
  fullname: Kosorok, Michael R
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22754029$$D View this record in MEDLINE/PubMed
BookMark eNo1j8tOg0AUQGdRYx-68AM0LN2MzutemCWh2JIQiC3GJZnCkNTwqExZ9O81sa7O5uQkZ0lm_dBbQh44e-GCq1cuaJjvNQYzsmBMMwoS1ZwsnftijIFW8pbMhfBBMaEX5PGdpnG4y5Js430mxdaL4myf7-K1tw6L8I7cNKZ19v7KFfl4i4toS9N8k0RhSiul_DM96BoDA0xK8Ctp0DbKt6qRSvooZIAoKw0cABsfK8QaoNacATNSyEroRqzI81_3NA7fk3Xnsju6yrat6e0wuZIHAgG0APxVn67qdOhsXZ7GY2fGS_m_JH4ANC1Fwg
CitedBy_id crossref_primary_10_1146_annurev_statistics_022513_115553
crossref_primary_10_1093_biomet_asu050
crossref_primary_10_1093_biomet_asy017
crossref_primary_10_1002_bimj_201700181
crossref_primary_10_1007_s40501_015_0050_9
crossref_primary_10_1111_biom_12627
crossref_primary_10_1038_s41409_020_0871_z
crossref_primary_10_1002_bimj_202200285
crossref_primary_10_1002_sim_6558
crossref_primary_10_1002_sim_8735
crossref_primary_10_1177_09622802241236954
crossref_primary_10_1177_1740774514525691
crossref_primary_10_1111_biom_13711
crossref_primary_10_1016_j_spl_2012_03_023
crossref_primary_10_1111_biom_12743
crossref_primary_10_1007_s10985_023_09605_8
crossref_primary_10_1080_01621459_2016_1155993
crossref_primary_10_1002_sim_9543
crossref_primary_10_3390_axioms13040212
crossref_primary_10_1158_1078_0432_CCR_17_1355
crossref_primary_10_3390_cancers13184624
crossref_primary_10_1002_sim_8976
crossref_primary_10_1080_01621459_2021_2008402
crossref_primary_10_1002_sim_9589
crossref_primary_10_1016_j_spl_2025_110357
crossref_primary_10_1111_biom_13084
crossref_primary_10_6339_23_JDS1107
crossref_primary_10_3390_stats4040046
crossref_primary_10_1111_rssb_12201
crossref_primary_10_1080_03610926_2020_1808686
crossref_primary_10_1080_01621459_2017_1330204
crossref_primary_10_1080_01621459_2014_937488
crossref_primary_10_1007_s13042_023_01869_8
crossref_primary_10_1146_annurev_statistics_030718_105251
crossref_primary_10_1002_sim_10223
crossref_primary_10_1007_s10985_022_09554_8
crossref_primary_10_1111_biom_12539
crossref_primary_10_1007_s12561_024_09471_4
crossref_primary_10_1093_aje_kwz272
crossref_primary_10_1093_biomet_asy043
crossref_primary_10_1111_biom_12894
crossref_primary_10_1080_01621459_2020_1862671
crossref_primary_10_1111_biom_13872
crossref_primary_10_1080_01621459_2019_1672557
crossref_primary_10_1111_insr_12583
crossref_primary_10_1145_3477600
crossref_primary_10_1002_sim_9198
crossref_primary_10_1007_s11684_013_0245_7
crossref_primary_10_1093_biomet_asac047
crossref_primary_10_1093_biostatistics_kxae002
crossref_primary_10_1080_01621459_2015_1086353
crossref_primary_10_1093_biostatistics_kxz042
crossref_primary_10_1007_s10985_022_09566_4
crossref_primary_10_1186_s12874_022_01811_6
crossref_primary_10_1111_rssa_12250
crossref_primary_10_1214_17_EJS1231
crossref_primary_10_1002_sim_6859
crossref_primary_10_1080_00949655_2020_1793341
crossref_primary_10_1093_jrsssa_qnaf123
crossref_primary_10_1002_sim_8678
crossref_primary_10_1080_01621459_2022_2108816
crossref_primary_10_1177_0962280220959118
crossref_primary_10_1002_sim_8473
crossref_primary_10_1080_01621459_2019_1629939
crossref_primary_10_1093_biostatistics_kxy062
crossref_primary_10_1214_24_AOAS1984
crossref_primary_10_1080_01621459_2020_1863224
crossref_primary_10_1002_sim_6783
crossref_primary_10_1080_01621459_2016_1200914
crossref_primary_10_1111_rssc_12266
crossref_primary_10_1080_01621459_2017_1321545
crossref_primary_10_1177_1740774514532570
crossref_primary_10_1080_01621459_2022_2152343
crossref_primary_10_1002_sim_6104
crossref_primary_10_1016_j_artmed_2020_101964
crossref_primary_10_1093_biomtc_ujaf082
crossref_primary_10_1186_s40345_014_0018_5
crossref_primary_10_1080_01621459_2018_1529597
crossref_primary_10_1177_09622802241262525
crossref_primary_10_1002_sim_8363
crossref_primary_10_1080_01621459_2022_2068420
crossref_primary_10_1108_IR_01_2019_0002
crossref_primary_10_1109_TNNLS_2020_2981377
ContentType Journal Article
DBID NPM
7X8
DOI 10.1214/12-AOS968
DatabaseName PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Statistics
Mathematics
ExternalDocumentID 22754029
Genre Journal Article
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: P01 CA142538
GroupedDBID -~X
123
23M
2AX
2FS
2WC
3R3
5RE
6J9
85S
AAFWJ
AAWIL
AAYJJ
ABAWQ
ABBHK
ABFAN
ABPFR
ABPQH
ABXSQ
ABYWD
ABZEH
ACGFO
ACHJO
ACIPV
ACIWK
ACMTB
ACNCT
ACTMH
ACUBG
ADLSF
ADNWM
ADODI
ADULT
AECCQ
AENEX
AETVE
AEUPB
AFFOW
AFVYC
AFXHP
AGLNM
AIHAF
ALMA_UNASSIGNED_HOLDINGS
ALRMG
CJ0
CS3
D0L
DQDLB
DSRWC
E3Z
EBS
ECEWR
EJD
F5P
GR0
HDK
HQ6
IPSME
JAAYA
JAS
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
L7B
N9A
NPM
OFU
OK1
P2P
PQQKQ
PUASD
RBU
REI
RNS
RPE
SA0
SJN
TN5
TR2
UPT
WH7
WS9
XSW
ZCG
ZY4
7X8
AFHLI
ID FETCH-LOGICAL-c447t-b9d68a503357c3a6ef47e4f34376238663c951556f76c66d55d91050a323c29f2
IEDL.DBID 7X8
ISICitedReferencesCount 101
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000304684900020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0090-5364
IngestDate Thu Oct 02 18:36:52 EDT 2025
Sat May 31 02:05:16 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c447t-b9d68a503357c3a6ef47e4f34376238663c951556f76c66d55d91050a323c29f2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 22754029
PQID 1826559256
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1826559256
pubmed_primary_22754029
PublicationCentury 2000
PublicationDate 2012-02-01
PublicationDateYYYYMMDD 2012-02-01
PublicationDate_xml – month: 02
  year: 2012
  text: 2012-02-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Annals of statistics
PublicationTitleAlternate Ann Stat
PublicationYear 2012
SSID ssj0005943
Score 2.4170566
Snippet We develop methodology for a multistage-decision problem with flexible number of stages in which the rewards are survival times that are subject to censoring....
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 529
Title Q-LEARNING WITH CENSORED DATA
URI https://www.ncbi.nlm.nih.gov/pubmed/22754029
https://www.proquest.com/docview/1826559256
Volume 40
WOSCitedRecordID wos000304684900020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3LT8JAEMY3Kh7w4ANfqJiaeN3Qbrfb7sk0UIRECgJGbs2yj2NBUf9-Z9siJxMTL71t0kx3Z37dmXwfQveBNp7rigUmjBhMF67EgjCBgV2lIVpJRlRhNhGmaTSf83F14bauxio3ObFI1Gop7R1523Iw0C9U6IfVG7auUba7Wllo7KKaDyhjD2Y436qFB5upOe7iwGe0UhYiHm17BMejKWfR72RZVJje0X_f7RgdVmzpxOVmOEE7Om-gg-GPMOu6geoWLktt5lPUesZPSTxJB-mj8zqY9Z1Okk5Hk6TrdONZfIZeesms08eVXQKWlIYfeMEVi4RtSwah9AXThoaaGp9CDoHCDGghuTV0YSZkkjEVBApYIXCFT3xJuCHnaC9f5voSOfDnGqlQcdeF5ZHV-As8RZTvMQF8EIkmutsEIoPtaHsMItfLz3W2DUUTXZTRzFalbkZGSAh8SPjVH1ZfozqgCSnno29QzcBh1C20L78gSO-3xXeGZzoefgOVRKvv
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Q-LEARNING+WITH+CENSORED+DATA&rft.jtitle=The+Annals+of+statistics&rft.au=Goldberg%2C+Yair&rft.au=Kosorok%2C+Michael+R&rft.date=2012-02-01&rft.issn=0090-5364&rft.volume=40&rft.issue=1&rft.spage=529&rft_id=info:doi/10.1214%2F12-AOS968&rft_id=info%3Apmid%2F22754029&rft_id=info%3Apmid%2F22754029&rft.externalDocID=22754029
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-5364&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-5364&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-5364&client=summon