Q-LEARNING WITH CENSORED DATA

We develop methodology for a multistage-decision problem with flexible number of stages in which the rewards are survival times that are subject to censoring. We present a novel Q-learning algorithm that is adjusted for censored data and allows a flexible number of stages. We provide finite sample b...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The Annals of statistics Ročník 40; číslo 1; s. 529
Hlavní autoři: Goldberg, Yair, Kosorok, Michael R
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 01.02.2012
ISSN:0090-5364
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We develop methodology for a multistage-decision problem with flexible number of stages in which the rewards are survival times that are subject to censoring. We present a novel Q-learning algorithm that is adjusted for censored data and allows a flexible number of stages. We provide finite sample bounds on the generalization error of the policy learned by the algorithm, and show that when the optimal Q-function belongs to the approximation space, the expected survival time for policies obtained by the algorithm converges to that of the optimal policy. We simulate a multistage clinical trial with flexible number of stages and apply the proposed censored-Q-learning algorithm to find individualized treatment regimens. The methodology presented in this paper has implications in the design of personalized medicine trials in cancer and in other life-threatening diseases.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0090-5364
DOI:10.1214/12-AOS968