Side Information Design in Zero-Error Coding for Computing

We investigate the zero-error coding for computing problems with encoder side information. An encoder provides access to a source X and is furnished with side information g(Y). It communicates with a decoder that possesses side information Y and aims to retrieve f(X,Y) with zero probability of error...

Full description

Saved in:
Bibliographic Details
Published in:Entropy (Basel, Switzerland) Vol. 26; no. 4; pp. 338 - 18
Main Authors: Charpenay, Nicolas, Le Treust, Maël, Roumy, Aline
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 16.04.2024
MDPI
Subjects:
ISSN:1099-4300, 1099-4300
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We investigate the zero-error coding for computing problems with encoder side information. An encoder provides access to a source X and is furnished with side information g(Y). It communicates with a decoder that possesses side information Y and aims to retrieve f(X,Y) with zero probability of error, where f and g are assumed to be deterministic functions. In previous work, we determined a condition that yields an analytic expression for the optimal rate R*(g); in particular, it covers the case where PX,Y is full support. In this article, we review this result and study the side information design problem, which consists of finding the best trade-offs between the quality of the encoder’s side information g(Y) and R*(g). We construct two greedy algorithms that give an achievable set of points in the side information design problem, based on partition refining and coarsening. One of them runs in polynomial time.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1099-4300
1099-4300
DOI:10.3390/e26040338