Inverse optimization for multi-objective linear programming

This paper generalizes inverse optimization for multi-objective linear programming where we are looking for the least problem modifications to make a given feasible solution a weak efficient solution. This is a natural extension of inverse optimization for single-objective linear programming with re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optimization letters Jg. 13; H. 2; S. 281 - 294
Hauptverfasser: Naghavi, Mostafa, Foroughi, Ali Asghar, Zarepisheh, Masoud
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.01.2019
Schlagworte:
ISSN:1862-4472, 1862-4480
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper generalizes inverse optimization for multi-objective linear programming where we are looking for the least problem modifications to make a given feasible solution a weak efficient solution. This is a natural extension of inverse optimization for single-objective linear programming with regular “optimality” replaced by the “Pareto optimality”. This extension, however, leads to a non-convex optimization problem. We prove some special characteristics of the problem, allowing us to solve the non-convex problem by solving a series of convex problems.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1862-4472
1862-4480
DOI:10.1007/s11590-019-01394-0