Implementation of Carrier-Based Simple Boost Pulse Width Modulation (PWM) for Z-Source Inverter (ZSI) using Field Programming Gate Array (FPGA)

In recent years, the research on the Z-source inverter (ZSI) has received a wide acceptance due to its attractive solution for example in the renewable energy interface that requires voltage boost capability. The conventional inverter circuit based on the SPWM technique for example does not able to...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IOP conference series. Materials Science and Engineering Ročník 226; číslo 1; s. 12141 - 12150
Hlavní autori: Muhammad, M, Rasin, Z, Jidin, A
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Bristol IOP Publishing 01.08.2017
Predmet:
ISSN:1757-8981, 1757-899X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In recent years, the research on the Z-source inverter (ZSI) has received a wide acceptance due to its attractive solution for example in the renewable energy interface that requires voltage boost capability. The conventional inverter circuit based on the SPWM technique for example does not able to fully utilize its DC input voltage to produce a greater output voltage. The ZSI shoot-through implementation in high switching frequency requires a processor with fast sampling and high precision. In simulation, this can be easily carried out with the available advanced engineering software. In the hardware implementation however, the processor used is not only handle the switching, but also needs to read the data obtained by the sensor, voltage and current control, information display etc. This limits the capacity that can be used to implement the switching fast sampling with high precision. The aims of this work are to implement high precision of carrier-based simple boost PWM for ZSI using FPGA and to verify its real time hardware implementation. The high precision of PWM control algorithm based on the FPGA platform is verified by comparing the simulation results with the experimental results for different modulation index and boost factor, and a good agreement is concluded. It is observed that the application of FPGA reduces complexity, increases speed and the design of the switching technique can be altered without having to modify the hardware implementation.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1757-8981
1757-899X
DOI:10.1088/1757-899X/226/1/012141