A New Family of q-Supercongruences Modulo the Fourth Power of a Cyclotomic Polynomial

We establish a new family of q -supercongruences modulo the fourth power of a cyclotomic polynomial, and give several related results. Our main ingredients are q -microscoping and the Chinese remainder theorem for polynomials.

Uložené v:
Podrobná bibliografia
Vydané v:Resultate der Mathematik Ročník 75; číslo 4; s. 155
Hlavní autori: Guo, Victor J. W., Schlosser, Michael J.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cham Springer International Publishing 01.12.2020
Predmet:
ISSN:1422-6383, 1420-9012, 1420-9012
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We establish a new family of q -supercongruences modulo the fourth power of a cyclotomic polynomial, and give several related results. Our main ingredients are q -microscoping and the Chinese remainder theorem for polynomials.
AbstractList We establish a new family of q-supercongruences modulo the fourth power of a cyclotomic polynomial, and give several related results. Our main ingredients are q-microscoping and the Chinese remainder theorem for polynomials.We establish a new family of q-supercongruences modulo the fourth power of a cyclotomic polynomial, and give several related results. Our main ingredients are q-microscoping and the Chinese remainder theorem for polynomials.
We establish a new family of q -supercongruences modulo the fourth power of a cyclotomic polynomial, and give several related results. Our main ingredients are q -microscoping and the Chinese remainder theorem for polynomials.
We establish a new family of q-supercongruences modulo the fourth power of a cyclotomic polynomial, and give several related results. Our main ingredients are q-microscoping and the Chinese remainder theorem for polynomials.
We establish a new family of -supercongruences modulo the fourth power of a cyclotomic polynomial, and give several related results. Our main ingredients are -microscoping and the Chinese remainder theorem for polynomials.
ArticleNumber 155
Author Guo, Victor J. W.
Schlosser, Michael J.
Author_xml – sequence: 1
  givenname: Victor J. W.
  surname: Guo
  fullname: Guo, Victor J. W.
  organization: School of Mathematics and Statistics, Huaiyin Normal University
– sequence: 2
  givenname: Michael J.
  orcidid: 0000-0002-2612-2431
  surname: Schlosser
  fullname: Schlosser, Michael J.
  email: michael.schlosser@univie.ac.at
  organization: Fakultät für Mathematik, Universität Wien
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33269012$$D View this record in MEDLINE/PubMed
BookMark eNp9kctuFDEQRS0URB7wAyxQL9k0lB-x2xukaJQBpPCQIGvL466eceS2J3Y30fw9nkyCgEVWrrLPvWXVPSVHMUUk5DWFdxRAvS8AwM5bYNACZYq16hk5oaK2uvZH9zVrJe_4MTkt5QbgnDHKXpBjzpncMyfk-qL5infN0o4-7Jo0NLftj3mL2aW4zjNGh6X5kvo5pGbaYLNMc542zfd0h3lP22axcyFNafSu3oZdrJUNL8nzwYaCrx7OM3K9vPy5-NReffv4eXFx1Toh5NQ62_OB95TzAbXoXFd_xzVXVArBhk4A7SWClqAspb1FzVe6Fx2C0L2FleVn5MPBdzuvRuwdxinbYLbZjzbvTLLe_PsS_cas0y-jZNeB1tXg7YNBTrczlsmMvjgMwUZMczFMSKmU5IpV9M3fs_4MedxlBboD4HIqJeNgnJ_s5NN-tA-GgtnHZg6xmRqbuY_NqCpl_0kf3Z8U8YOoVDiuMZubmk6s-35K9RtcsqnW
CitedBy_id crossref_primary_10_1007_s00025_021_01563_7
crossref_primary_10_1007_s13398_021_01171_8
crossref_primary_10_1007_s13398_021_01172_7
crossref_primary_10_1007_s40840_025_01877_7
crossref_primary_10_1007_s00025_025_02369_7
crossref_primary_10_1007_s11139_021_00452_5
crossref_primary_10_1007_s11139_020_00369_5
crossref_primary_10_1007_s11139_022_00597_x
crossref_primary_10_1007_s13398_025_01721_4
crossref_primary_10_1515_forum_2023_0409
crossref_primary_10_1007_s13398_022_01364_9
crossref_primary_10_1007_s13398_021_01092_6
crossref_primary_10_1007_s13398_022_01338_x
crossref_primary_10_1007_s00025_021_01423_4
crossref_primary_10_1007_s13398_021_01070_y
crossref_primary_10_1142_S1793042125500873
crossref_primary_10_1007_s10998_021_00432_8
crossref_primary_10_1007_s10998_021_00437_3
crossref_primary_10_1007_s00009_025_02889_0
crossref_primary_10_1007_s00025_023_01913_7
crossref_primary_10_1080_10236198_2025_2559028
crossref_primary_10_1007_s10998_022_00452_y
crossref_primary_10_1007_s40840_025_01912_7
crossref_primary_10_1515_ms_2024_0048
crossref_primary_10_1007_s00025_022_01801_6
crossref_primary_10_1007_s10801_021_01096_w
crossref_primary_10_1007_s13226_025_00795_5
crossref_primary_10_1007_s00025_023_01885_8
crossref_primary_10_1007_s00025_021_01350_4
crossref_primary_10_1007_s00025_022_01753_x
crossref_primary_10_1216_rmj_2025_55_147
crossref_primary_10_1007_s11139_021_00478_9
Cites_doi 10.1080/10236198.2019.1622690
10.1090/proc/14301
10.1142/S1793042119501069
10.1007/978-1-4612-0879-2
10.1007/s13398-020-00854-y
10.1016/j.aam.2020.102003
10.1016/j.aam.2020.102078
10.1016/j.jmaa.2019.07.062
10.1142/S1793042120500694
10.2140/pjm.2011.249.405
10.1016/j.jmaa.2020.124022
10.1007/s00025-020-01195-3
10.1017/prm.2018.96
10.1007/s00025-019-1126-4
10.1007/s11425-011-4302-x
10.4064/cm133-1-9
10.1016/j.jnt.2009.01.013
10.1007/s00026-019-00461-8
10.1007/s00025-020-1168-7
10.1016/j.aim.2019.02.008
10.5802/crmath.35
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020.
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020.
DBID C6C
AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1007/s00025-020-01272-7
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1420-9012
ExternalDocumentID PMC7688099
33269012
10_1007_s00025_020_01272_7
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 11771175
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Austrian Science Fund
  grantid: P32305
  funderid: http://dx.doi.org/10.13039/501100002428
– fundername: ;
  grantid: P32305
– fundername: ;
  grantid: 11771175
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
203
29P
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
78A
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAEWM
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9R
PF0
PT4
QOS
R89
R9I
RHV
RIG
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCLPG
SDD
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
YNT
Z45
ZMTXR
ZWQNP
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
K7-
M2P
PHGZM
PHGZT
PQGLB
NPM
7X8
5PM
ID FETCH-LOGICAL-c446t-cad3f3d133fe948c8212393716442f8401d6e09607a11dae93b9d48e049da0ba3
IEDL.DBID RSV
ISICitedReferencesCount 51
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000573795900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1422-6383
1420-9012
IngestDate Tue Nov 04 01:56:29 EST 2025
Thu Sep 04 17:04:03 EDT 2025
Mon Jul 21 06:05:27 EDT 2025
Tue Nov 18 21:08:10 EST 2025
Sat Nov 29 03:47:24 EST 2025
Fri Feb 21 02:37:27 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Primary 33D15
supercongruences
cyclotomic polynomial
11B65
Basic hypergeometric series
congruences
Secondary 11A07
microscoping
Chinese remainder theorem for polynomials
q-congruences
q-microscoping
Language English
License The Author(s) 2020.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-cad3f3d133fe948c8212393716442f8401d6e09607a11dae93b9d48e049da0ba3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2612-2431
OpenAccessLink https://link.springer.com/10.1007/s00025-020-01272-7
PMID 33269012
PQID 2466776372
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7688099
proquest_miscellaneous_2466776372
pubmed_primary_33269012
crossref_citationtrail_10_1007_s00025_020_01272_7
crossref_primary_10_1007_s00025_020_01272_7
springer_journals_10_1007_s00025_020_01272_7
PublicationCentury 2000
PublicationDate 20201200
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 20201200
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Switzerland
PublicationSubtitle Resultate der Mathematik
PublicationTitle Resultate der Mathematik
PublicationTitleAbbrev Results Math
PublicationTitleAlternate Results Math
PublicationYear 2020
Publisher Springer International Publishing
Publisher_xml – name: Springer International Publishing
References GorodetskyOq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-Congruences, with applications to supercongruences and the cyclic sieving phenomenonInt. J. Number Theory20191519191968401552010.1142/S1793042119501069
LongLHypergeometric evaluation identities and supercongruencesPac. J. Math.2011249405418278267710.2140/pjm.2011.249.405
Guo, V.J.W., Schlosser, M.J.: A family of q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-hypergeometric congruences modulo the fourth power of a cyclotomic polynomial. Israel J. Math. (to appear)
RamanujanSModular equations and approximations to π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document}Quart. J. Math. Oxford Ser. (2)19144535037245.1249.01
WangXYueMA q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-analogue of the (A.2) supercongruence of Van Hamme for any prime p≡3(mod4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\equiv 3~(\text{ mod } ~ 4)$$\end{document}Int. J. Number Theory20201613251335412047910.1142/S1793042120500694
ZudilinWCongruences for q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-binomial coefficientsAnn. Combin.20192311231135403957910.1007/s00026-019-00461-8
GuoVJWq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-Supercongruences modulo the fourth power of a cyclotomic polynomial via creative microscopingAdv. Appl. Math.2020120102078412195110.1016/j.aam.2020.102078
Van Hamme, L.: Some conjectures concerning partial sums of generalized hypergeometric series. In: p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-Adic Functional Analysis (Nijmegen, 1996). Lecture Notes in Pure and Applied Mathematics, vol. 192, pp. 223–236. Dekker, New York (1997)
GuoVJWSchlosserMJSome new q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-congruences for truncated basic hypergeometric series: even powersResults Math.2020751404063210.1007/s00025-019-1126-4
GuoVJWSchlosserMJProof of a basic hypergeometric supercongruence modulo the fifth power of a cyclotomic polynomialJ. Differ. Equ. Appl.201925921929399695810.1080/10236198.2019.1622690
LiuJ-COn a congruence involving q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-Catalan numbersC. R. Math. Acad. Sci. Paris2020358211215411817707226778
SunZ-WSuper congruences and Euler numbersSci. China Math.20115425092535286128910.1007/s11425-011-4302-x
GuoVJWq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-Analogues of Dwork-type supercongruencesJ. Math. Anal. Appl.2020487124022407853710.1016/j.jmaa.2020.124022
WangXYueMSome q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-supercongruences from Watson’s 8ϕ7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_8\phi _7$$\end{document} transformation formulaResults Math.2020757110.1007/s00025-020-01195-3
NiH-XPanHSome symmetric q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-congruences modulo the square of a cyclotomic polynomialJ. Math. Anal. Appl.2020481123372400719610.1016/j.jmaa.2019.07.062
GuoVJWZudilinWA q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-microscope for supercongruencesAdv. Math.2019346329358391079810.1016/j.aim.2019.02.008
ZudilinWRamanujan-type supercongruencesJ. Number Theory200912918481857252270810.1016/j.jnt.2009.01.013
TaurasoRSome q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-analogs of congruences for central binomial sumsColloq. Math.2013133133143313942010.4064/cm133-1-9
GuoVJWA q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-analogue of the (A.2) supercongruence of Van Hamme for primes p≡1(mod4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\equiv 1~(\text{mod}~ 4)$$\end{document}Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat.202011412310.1007/s13398-020-00854-y
Guo, V.J.W.: A further q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-analogue of Van Hamme’s (H.2) supercongruence for primes p≡3(mod4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\equiv 3~(\text{ mod }~ 4)$$\end{document}. Int. J. Number Theory (to appear)
GuoVJWWangS-DSome congruences involving fourth powers of central q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-binomial coefficientsProc. R. Soc. Edinb. Sect. A202015011271138409105510.1017/prm.2018.96
LiuJ-CPetrovFCongruences on sums of q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-binomial coefficientsAdv. Appl. Math.2020116102003405611410.1016/j.aam.2020.102003
GasperGRahmanMEncyclopedia of Mathematics and Its Applications20042CambridgeCambridge University Press
BerndtBCRamanujan’s Notebooks, Part IV1994New YorkSpringer10.1007/978-1-4612-0879-2
StraubASupercongruences for polynomial analogs of the Apéry numbersProc. Am. Math. Soc.20191471023103610.1090/proc/14301
Guo, V.J.W., Schlosser, M.J.: Some q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-supercongruences from transformation formulas for basic hypergeometric series. Constr. Approx. (to appear)
GuoVJWZudilinWA common q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-analogue of two supercongruencesResults Math.20207546407530010.1007/s00025-020-1168-7
BC Berndt (1272_CR1) 1994
VJW Guo (1272_CR5) 2020; 487
1272_CR11
1272_CR10
VJW Guo (1272_CR8) 2019; 25
X Wang (1272_CR25) 2020; 75
O Gorodetsky (1272_CR3) 2019; 15
VJW Guo (1272_CR4) 2020; 114
H-X Ni (1272_CR18) 2020; 481
Z-W Sun (1272_CR20) 2011; 54
L Long (1272_CR17) 2011; 249
VJW Guo (1272_CR6) 2020; 120
W Zudilin (1272_CR27) 2019; 23
VJW Guo (1272_CR12) 2020; 150
J-C Liu (1272_CR15) 2020; 358
1272_CR23
R Tauraso (1272_CR22) 2013; 133
G Gasper (1272_CR2) 2004
W Zudilin (1272_CR26) 2009; 129
VJW Guo (1272_CR14) 2020; 75
X Wang (1272_CR24) 2020; 16
VJW Guo (1272_CR9) 2020; 75
A Straub (1272_CR21) 2019; 147
1272_CR7
J-C Liu (1272_CR16) 2020; 116
S Ramanujan (1272_CR19) 1914; 45
VJW Guo (1272_CR13) 2019; 346
References_xml – reference: GasperGRahmanMEncyclopedia of Mathematics and Its Applications20042CambridgeCambridge University Press
– reference: RamanujanSModular equations and approximations to π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document}Quart. J. Math. Oxford Ser. (2)19144535037245.1249.01
– reference: GuoVJWSchlosserMJSome new q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-congruences for truncated basic hypergeometric series: even powersResults Math.2020751404063210.1007/s00025-019-1126-4
– reference: GorodetskyOq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-Congruences, with applications to supercongruences and the cyclic sieving phenomenonInt. J. Number Theory20191519191968401552010.1142/S1793042119501069
– reference: TaurasoRSome q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-analogs of congruences for central binomial sumsColloq. Math.2013133133143313942010.4064/cm133-1-9
– reference: BerndtBCRamanujan’s Notebooks, Part IV1994New YorkSpringer10.1007/978-1-4612-0879-2
– reference: Guo, V.J.W.: A further q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-analogue of Van Hamme’s (H.2) supercongruence for primes p≡3(mod4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\equiv 3~(\text{ mod }~ 4)$$\end{document}. Int. J. Number Theory (to appear)
– reference: Guo, V.J.W., Schlosser, M.J.: A family of q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-hypergeometric congruences modulo the fourth power of a cyclotomic polynomial. Israel J. Math. (to appear)
– reference: LongLHypergeometric evaluation identities and supercongruencesPac. J. Math.2011249405418278267710.2140/pjm.2011.249.405
– reference: GuoVJWWangS-DSome congruences involving fourth powers of central q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-binomial coefficientsProc. R. Soc. Edinb. Sect. A202015011271138409105510.1017/prm.2018.96
– reference: GuoVJWZudilinWA common q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-analogue of two supercongruencesResults Math.20207546407530010.1007/s00025-020-1168-7
– reference: GuoVJWq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-Supercongruences modulo the fourth power of a cyclotomic polynomial via creative microscopingAdv. Appl. Math.2020120102078412195110.1016/j.aam.2020.102078
– reference: GuoVJWq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-Analogues of Dwork-type supercongruencesJ. Math. Anal. Appl.2020487124022407853710.1016/j.jmaa.2020.124022
– reference: NiH-XPanHSome symmetric q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-congruences modulo the square of a cyclotomic polynomialJ. Math. Anal. Appl.2020481123372400719610.1016/j.jmaa.2019.07.062
– reference: SunZ-WSuper congruences and Euler numbersSci. China Math.20115425092535286128910.1007/s11425-011-4302-x
– reference: StraubASupercongruences for polynomial analogs of the Apéry numbersProc. Am. Math. Soc.20191471023103610.1090/proc/14301
– reference: WangXYueMA q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-analogue of the (A.2) supercongruence of Van Hamme for any prime p≡3(mod4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\equiv 3~(\text{ mod } ~ 4)$$\end{document}Int. J. Number Theory20201613251335412047910.1142/S1793042120500694
– reference: ZudilinWRamanujan-type supercongruencesJ. Number Theory200912918481857252270810.1016/j.jnt.2009.01.013
– reference: Van Hamme, L.: Some conjectures concerning partial sums of generalized hypergeometric series. In: p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-Adic Functional Analysis (Nijmegen, 1996). Lecture Notes in Pure and Applied Mathematics, vol. 192, pp. 223–236. Dekker, New York (1997)
– reference: LiuJ-COn a congruence involving q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-Catalan numbersC. R. Math. Acad. Sci. Paris2020358211215411817707226778
– reference: GuoVJWA q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-analogue of the (A.2) supercongruence of Van Hamme for primes p≡1(mod4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\equiv 1~(\text{mod}~ 4)$$\end{document}Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat.202011412310.1007/s13398-020-00854-y
– reference: GuoVJWZudilinWA q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-microscope for supercongruencesAdv. Math.2019346329358391079810.1016/j.aim.2019.02.008
– reference: Guo, V.J.W., Schlosser, M.J.: Some q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-supercongruences from transformation formulas for basic hypergeometric series. Constr. Approx. (to appear)
– reference: ZudilinWCongruences for q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-binomial coefficientsAnn. Combin.20192311231135403957910.1007/s00026-019-00461-8
– reference: GuoVJWSchlosserMJProof of a basic hypergeometric supercongruence modulo the fifth power of a cyclotomic polynomialJ. Differ. Equ. Appl.201925921929399695810.1080/10236198.2019.1622690
– reference: LiuJ-CPetrovFCongruences on sums of q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-binomial coefficientsAdv. Appl. Math.2020116102003405611410.1016/j.aam.2020.102003
– reference: WangXYueMSome q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-supercongruences from Watson’s 8ϕ7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_8\phi _7$$\end{document} transformation formulaResults Math.2020757110.1007/s00025-020-01195-3
– volume: 25
  start-page: 921
  year: 2019
  ident: 1272_CR8
  publication-title: J. Differ. Equ. Appl.
  doi: 10.1080/10236198.2019.1622690
– volume: 147
  start-page: 1023
  year: 2019
  ident: 1272_CR21
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/proc/14301
– volume: 15
  start-page: 1919
  year: 2019
  ident: 1272_CR3
  publication-title: Int. J. Number Theory
  doi: 10.1142/S1793042119501069
– volume-title: Encyclopedia of Mathematics and Its Applications
  year: 2004
  ident: 1272_CR2
– ident: 1272_CR7
– volume-title: Ramanujan’s Notebooks, Part IV
  year: 1994
  ident: 1272_CR1
  doi: 10.1007/978-1-4612-0879-2
– volume: 114
  start-page: 123
  year: 2020
  ident: 1272_CR4
  publication-title: Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat.
  doi: 10.1007/s13398-020-00854-y
– volume: 116
  start-page: 102003
  year: 2020
  ident: 1272_CR16
  publication-title: Adv. Appl. Math.
  doi: 10.1016/j.aam.2020.102003
– volume: 120
  start-page: 102078
  year: 2020
  ident: 1272_CR6
  publication-title: Adv. Appl. Math.
  doi: 10.1016/j.aam.2020.102078
– ident: 1272_CR11
– volume: 481
  start-page: 123372
  year: 2020
  ident: 1272_CR18
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2019.07.062
– volume: 16
  start-page: 1325
  year: 2020
  ident: 1272_CR24
  publication-title: Int. J. Number Theory
  doi: 10.1142/S1793042120500694
– volume: 249
  start-page: 405
  year: 2011
  ident: 1272_CR17
  publication-title: Pac. J. Math.
  doi: 10.2140/pjm.2011.249.405
– volume: 487
  start-page: 124022
  year: 2020
  ident: 1272_CR5
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2020.124022
– volume: 75
  start-page: 71
  year: 2020
  ident: 1272_CR25
  publication-title: Results Math.
  doi: 10.1007/s00025-020-01195-3
– volume: 150
  start-page: 1127
  year: 2020
  ident: 1272_CR12
  publication-title: Proc. R. Soc. Edinb. Sect. A
  doi: 10.1017/prm.2018.96
– volume: 45
  start-page: 350
  year: 1914
  ident: 1272_CR19
  publication-title: Quart. J. Math. Oxford Ser. (2)
– ident: 1272_CR23
– volume: 75
  start-page: 1
  year: 2020
  ident: 1272_CR9
  publication-title: Results Math.
  doi: 10.1007/s00025-019-1126-4
– volume: 54
  start-page: 2509
  year: 2011
  ident: 1272_CR20
  publication-title: Sci. China Math.
  doi: 10.1007/s11425-011-4302-x
– volume: 133
  start-page: 133
  year: 2013
  ident: 1272_CR22
  publication-title: Colloq. Math.
  doi: 10.4064/cm133-1-9
– volume: 129
  start-page: 1848
  year: 2009
  ident: 1272_CR26
  publication-title: J. Number Theory
  doi: 10.1016/j.jnt.2009.01.013
– volume: 23
  start-page: 1123
  year: 2019
  ident: 1272_CR27
  publication-title: Ann. Combin.
  doi: 10.1007/s00026-019-00461-8
– volume: 75
  start-page: 46
  year: 2020
  ident: 1272_CR14
  publication-title: Results Math.
  doi: 10.1007/s00025-020-1168-7
– ident: 1272_CR10
– volume: 346
  start-page: 329
  year: 2019
  ident: 1272_CR13
  publication-title: Adv. Math.
  doi: 10.1016/j.aim.2019.02.008
– volume: 358
  start-page: 211
  year: 2020
  ident: 1272_CR15
  publication-title: C. R. Math. Acad. Sci. Paris
  doi: 10.5802/crmath.35
SSID ssj0052212
Score 2.4360816
Snippet We establish a new family of q -supercongruences modulo the fourth power of a cyclotomic polynomial, and give several related results. Our main ingredients are...
We establish a new family of -supercongruences modulo the fourth power of a cyclotomic polynomial, and give several related results. Our main ingredients are...
We establish a new family of q-supercongruences modulo the fourth power of a cyclotomic polynomial, and give several related results. Our main ingredients are...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 155
SubjectTerms Mathematics
Mathematics and Statistics
Title A New Family of q-Supercongruences Modulo the Fourth Power of a Cyclotomic Polynomial
URI https://link.springer.com/article/10.1007/s00025-020-01272-7
https://www.ncbi.nlm.nih.gov/pubmed/33269012
https://www.proquest.com/docview/2466776372
https://pubmed.ncbi.nlm.nih.gov/PMC7688099
Volume 75
WOSCitedRecordID wos000573795900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1420-9012
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0052212
  issn: 1422-6383
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEB68HvTB-1gvIvimhe1BkzyKuPigy-LFvpW0SXShtOu2K-y_d5IesCqCvrZJaCeTme9jMjMA50on0hOCO7wbB45xuY7QSjuiK5NQI4bWtt3byx3t99lwyAd1UljR3HZvQpLWUrfJbl3betXQHRMuRVy4CMvo7pg5jg-PL439RUBRxTgDpFmoXX6dKvPzGvPu6BvG_H5V8ku81Lqh3sb_fmAT1mvYSa4qPdmCBZVtw9p9W7O12IHnK4IWj1SdMEiuybvzOB2rCRLm10l13Zrc53Ka5gRnkR4uWb6RgemyZkYLcj1L0rw0Wc74NJ2ZfGeR7sJz7-bp-tapmy44CTLD0kmE9LUvkbpqxQOWMOPbTNE8BE6eRjroylAZ3kOF60qhuB9zGTCFTEOKbiz8PVjK8kwdANEej11FOYIKnKvcmLsmcZZRzvxQx7IDbiP7KKkrkpvGGGnU1lK2IotQZJEVWUQ7cNHOGVf1OH4dfdZsaYTHxsRCRKbyaRF5QRhStK3U68B-tcXtej5CWoRJ-IbObX47wJTknn-Tjd5saW4kbwwxdwcuGxWIaptQ_PKZh38bfgSrntEie6nmGJZKVIITWEk-ylExOYVFOmSn9kh8AuKWAzc
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEB50FdQH72M9I_imhe1B2zyKuCjuLuKFbyFtElcorW67wv57J-kBqyLoa5uENpnMfB9zAZxIFQuHc2rRTuRZ2uRaXEll8Y6IfYUYWpl2b0-9YDAIn5_pbZUUltfR7rVL0mjqJtmtY1qvarqj3aWIC2dhzkOLpQP57u6fav2LgKL0cXpIs1C63CpV5uc1ps3RN4z5PVTyi7_UmKHuyv9-YBWWK9hJzks5WYMZma7DUr-p2ZpvwOM5QY1Hyk4YJFPk3bofv8kREuaXURluTfqZGCcZwVmki0sWQ3Kru6zp0ZxcTOIkK3SWMz5NJjrfmSeb8Ni9fLi4sqqmC1aMzLCwYi5c5QqkrkpSL4xDbdt00TwETo5COmgLX2reE3DbFlxSN6LCCyUyDcE7EXe3oJVmqdwBohwa2TKgCCpwrrQjauvE2TCgoeurSLTBrveexVVFct0YI2FNLWWzZQy3jJktY0EbTps5b2U9jl9HH9dHyvDaaF8IT2U2zpnj-X6AujVw2rBdHnGznouQFmESvgmmDr8ZoEtyT79JX4emNDeStxAxdxvOahFglU7If_nM3b8NP4KFq4d-j_WuBzd7sOhoiTIBNvvQKlAgDmA-_ihe89GhuRif9SIFMw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED_WbIz2ofvs5nYfGuxtM4k_sK3H0tVsLAmBriVvQraktWDsLHEG-e97J3-wLKMw-mqdZFs66X4_TncH8FGbXPlScpePstAlk-tKo40rRyqPDGJoY8u9XY3j6TSZz_nsjyh-e9u9c0k2MQ2Upamshwtlhn3g28iWYSXqQ65TxIh78DCkokHE1y-uurMYwUXj7wyRcqGmBW3YzL_H2DZNO3hz99rkX75Ta5LSJ_f_madw2MJRdtrozzN4oMvncDDpc7muXsDlKcOTkDUVMlhl2C_3Yr3QS3zJz2VzDZtNKrUuKoa9WIpD1tdsRtXXSFqys01eVDVFP-PTYkNx0LJ4CZfp-Y-zr25bjMHNkTHWbi5VYAKFlNZoHiZ5QjaPkukhoPIN0kRPRZr4UCw9T0nNg4yrMNHIQJQcZTI4gkFZlfo1MOPzzNMxR7CBfbWXcY8CapOYJ0FkMuWA162DyNtM5VQwoxB9jmU7ZQKnTNgpE7EDn_o-iyZPx53SH7rlFbidyEciS12tV8IPoyjGMzf2HXjVLHc_XoBQF-ETtsRbitALUKru7Zby5tqm7EZSlyAWd-Bzpw6iPStWd3zm8f-Jv4fHsy-pGH-bfj-BfZ8Uyt67eQODGvXhLTzKf9c3q-U7u0duAVWtDhc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+New+Family+of+q-Supercongruences+Modulo+the+Fourth+Power+of+a+Cyclotomic+Polynomial&rft.jtitle=Resultate+der+Mathematik&rft.au=Guo%2C+Victor+J+W&rft.au=Schlosser%2C+Michael+J&rft.date=2020-12-01&rft.issn=1420-9012&rft.eissn=1420-9012&rft.volume=75&rft.issue=4&rft.spage=155&rft_id=info:doi/10.1007%2Fs00025-020-01272-7&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-6383&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-6383&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-6383&client=summon