A New Family of q-Supercongruences Modulo the Fourth Power of a Cyclotomic Polynomial
We establish a new family of q -supercongruences modulo the fourth power of a cyclotomic polynomial, and give several related results. Our main ingredients are q -microscoping and the Chinese remainder theorem for polynomials.
Uloženo v:
| Vydáno v: | Resultate der Mathematik Ročník 75; číslo 4; s. 155 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Cham
Springer International Publishing
01.12.2020
|
| Témata: | |
| ISSN: | 1422-6383, 1420-9012, 1420-9012 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We establish a new family of
q
-supercongruences modulo the fourth power of a cyclotomic polynomial, and give several related results. Our main ingredients are
q
-microscoping and the Chinese remainder theorem for polynomials. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 1422-6383 1420-9012 1420-9012 |
| DOI: | 10.1007/s00025-020-01272-7 |