Defects Recognition Algorithm Development from Visual UAV Inspections
Aircraft maintenance plays a key role in the safety of air transport. One of its most significant procedures is the visual inspection of the aircraft skin for defects. This is mainly carried out manually and involves a high skilled human walking around the aircraft. It is very time consuming, costly...
Gespeichert in:
| Veröffentlicht in: | Sensors (Basel, Switzerland) Jg. 22; H. 13; S. 4682 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Basel
MDPI AG
21.06.2022
MDPI |
| Schlagworte: | |
| ISSN: | 1424-8220, 1424-8220 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Aircraft maintenance plays a key role in the safety of air transport. One of its most significant procedures is the visual inspection of the aircraft skin for defects. This is mainly carried out manually and involves a high skilled human walking around the aircraft. It is very time consuming, costly, stressful and the outcome heavily depends on the skills of the inspector. In this paper, we propose a two-step process for automating the defect recognition and classification from visual images. The visual inspection can be carried out with the use of an unmanned aerial vehicle (UAV) carrying an image sensor to fully automate the procedure and eliminate any human error. With our proposed method in the first step, we perform the crucial part of recognizing the defect. If a defect is found, the image is fed to an ensemble of classifiers for identifying the type. The classifiers are a combination of different pretrained convolution neural network (CNN) models, which we retrained to fit our problem. For achieving our goal, we created our own dataset with defect images captured from aircrafts during inspection in TUI’s maintenance hangar. The images were preprocessed and used to train different pretrained CNNs with the use of transfer learning. We performed an initial training of 40 different CNN architectures to choose the ones that best fitted our dataset. Then, we chose the best four for fine tuning and further testing. For the first step of defect recognition, the DenseNet201 CNN architecture performed better, with an overall accuracy of 81.82%. For the second step for the defect classification, an ensemble of different CNN models was used. The results show that even with a very small dataset, we can reach an accuracy of around 82% in the defect recognition and even 100% for the classification of the categories of missing or damaged exterior paint and primer and dents. |
|---|---|
| AbstractList | Aircraft maintenance plays a key role in the safety of air transport. One of its most significant procedures is the visual inspection of the aircraft skin for defects. This is mainly carried out manually and involves a high skilled human walking around the aircraft. It is very time consuming, costly, stressful and the outcome heavily depends on the skills of the inspector. In this paper, we propose a two-step process for automating the defect recognition and classification from visual images. The visual inspection can be carried out with the use of an unmanned aerial vehicle (UAV) carrying an image sensor to fully automate the procedure and eliminate any human error. With our proposed method in the first step, we perform the crucial part of recognizing the defect. If a defect is found, the image is fed to an ensemble of classifiers for identifying the type. The classifiers are a combination of different pretrained convolution neural network (CNN) models, which we retrained to fit our problem. For achieving our goal, we created our own dataset with defect images captured from aircrafts during inspection in TUI's maintenance hangar. The images were preprocessed and used to train different pretrained CNNs with the use of transfer learning. We performed an initial training of 40 different CNN architectures to choose the ones that best fitted our dataset. Then, we chose the best four for fine tuning and further testing. For the first step of defect recognition, the DenseNet201 CNN architecture performed better, with an overall accuracy of 81.82%. For the second step for the defect classification, an ensemble of different CNN models was used. The results show that even with a very small dataset, we can reach an accuracy of around 82% in the defect recognition and even 100% for the classification of the categories of missing or damaged exterior paint and primer and dents.Aircraft maintenance plays a key role in the safety of air transport. One of its most significant procedures is the visual inspection of the aircraft skin for defects. This is mainly carried out manually and involves a high skilled human walking around the aircraft. It is very time consuming, costly, stressful and the outcome heavily depends on the skills of the inspector. In this paper, we propose a two-step process for automating the defect recognition and classification from visual images. The visual inspection can be carried out with the use of an unmanned aerial vehicle (UAV) carrying an image sensor to fully automate the procedure and eliminate any human error. With our proposed method in the first step, we perform the crucial part of recognizing the defect. If a defect is found, the image is fed to an ensemble of classifiers for identifying the type. The classifiers are a combination of different pretrained convolution neural network (CNN) models, which we retrained to fit our problem. For achieving our goal, we created our own dataset with defect images captured from aircrafts during inspection in TUI's maintenance hangar. The images were preprocessed and used to train different pretrained CNNs with the use of transfer learning. We performed an initial training of 40 different CNN architectures to choose the ones that best fitted our dataset. Then, we chose the best four for fine tuning and further testing. For the first step of defect recognition, the DenseNet201 CNN architecture performed better, with an overall accuracy of 81.82%. For the second step for the defect classification, an ensemble of different CNN models was used. The results show that even with a very small dataset, we can reach an accuracy of around 82% in the defect recognition and even 100% for the classification of the categories of missing or damaged exterior paint and primer and dents. Aircraft maintenance plays a key role in the safety of air transport. One of its most significant procedures is the visual inspection of the aircraft skin for defects. This is mainly carried out manually and involves a high skilled human walking around the aircraft. It is very time consuming, costly, stressful and the outcome heavily depends on the skills of the inspector. In this paper, we propose a two-step process for automating the defect recognition and classification from visual images. The visual inspection can be carried out with the use of an unmanned aerial vehicle (UAV) carrying an image sensor to fully automate the procedure and eliminate any human error. With our proposed method in the first step, we perform the crucial part of recognizing the defect. If a defect is found, the image is fed to an ensemble of classifiers for identifying the type. The classifiers are a combination of different pretrained convolution neural network (CNN) models, which we retrained to fit our problem. For achieving our goal, we created our own dataset with defect images captured from aircrafts during inspection in TUI’s maintenance hangar. The images were preprocessed and used to train different pretrained CNNs with the use of transfer learning. We performed an initial training of 40 different CNN architectures to choose the ones that best fitted our dataset. Then, we chose the best four for fine tuning and further testing. For the first step of defect recognition, the DenseNet201 CNN architecture performed better, with an overall accuracy of 81.82%. For the second step for the defect classification, an ensemble of different CNN models was used. The results show that even with a very small dataset, we can reach an accuracy of around 82% in the defect recognition and even 100% for the classification of the categories of missing or damaged exterior paint and primer and dents. |
| Author | Plaster, Richard Avdelidis, Nicolas P. Tsourdos, Antonios Lafiosca, Pasquale Droznika, Mark Plaster, Anna |
| AuthorAffiliation | 1 School of Aerospace, Transport & Manufacturing, Cranfield University, Cranfield MK43 0AL, UK; a.tsourdos@cranfield.ac.uk (A.T.); pasquale.lafiosca@cranfield.ac.uk (P.L.) 2 ADDIT, 17 Railton Road, Wolseley Business Park, Kempston, Bedford MK42 7PN, UK; richardjamesplaster@gmail.com (R.P.); annaplaster@gmail.com (A.P.) 3 TUI Airline, Area 8, Hangar 61, Percival Way, London Luton Airport, Luton LU2 9PA, UK; mark.droznika@tui.co.uk |
| AuthorAffiliation_xml | – name: 3 TUI Airline, Area 8, Hangar 61, Percival Way, London Luton Airport, Luton LU2 9PA, UK; mark.droznika@tui.co.uk – name: 1 School of Aerospace, Transport & Manufacturing, Cranfield University, Cranfield MK43 0AL, UK; a.tsourdos@cranfield.ac.uk (A.T.); pasquale.lafiosca@cranfield.ac.uk (P.L.) – name: 2 ADDIT, 17 Railton Road, Wolseley Business Park, Kempston, Bedford MK42 7PN, UK; richardjamesplaster@gmail.com (R.P.); annaplaster@gmail.com (A.P.) |
| Author_xml | – sequence: 1 givenname: Nicolas P. orcidid: 0000-0003-1314-0603 surname: Avdelidis fullname: Avdelidis, Nicolas P. – sequence: 2 givenname: Antonios orcidid: 0000-0002-3966-7633 surname: Tsourdos fullname: Tsourdos, Antonios – sequence: 3 givenname: Pasquale orcidid: 0000-0002-3396-5744 surname: Lafiosca fullname: Lafiosca, Pasquale – sequence: 4 givenname: Richard surname: Plaster fullname: Plaster, Richard – sequence: 5 givenname: Anna surname: Plaster fullname: Plaster, Anna – sequence: 6 givenname: Mark surname: Droznika fullname: Droznika, Mark |
| BookMark | eNptkc1q3DAURkVIyV-7yBsYumkX01xdyba8KQxJ2g4ECiXNVsjS1USDbU0lO5C3r6cTQhK6kpDOd7jSd8oOhzgQY-ccvgjRwEVG5EJWCg_YCZcoFwoRDl_sj9lpzhsAFEKoI3YsSgWK1_UJu74iT3bMxS-ycT2EMcShWHbrmMJ43xdX9EBd3PY0jIVPsS_uQp5MV_xe3hWrIW_n6BzI79k7b7pMH57WM3b77fr28sfi5uf31eXyZmGlrMZFXRsEJVwtPXhQDtBA5aEEbwk5N-SwhRYlEjlCZwRYU_rSOxLeGCvO2GqvddFs9DaF3qRHHU3Q_w5iWmuTxmA70t6Lxvu68oK4dNQaJaiSrfPGKYS6nF1f967t1Pbk7PzCZLpX0tc3Q7jX6_igG6waKMUs-PQkSPHPRHnUfciWus4MFKessVJ1zatG7tCPb9BNnNIw_9SOqngDiGqmPu8pm2LOifzzMBz0rmf93PPMXrxhbRjNrot51tD9J_EXDSmreA |
| CitedBy_id | crossref_primary_10_3390_app15073584 crossref_primary_10_3390_s22239327 crossref_primary_10_1016_j_measurement_2024_115300 crossref_primary_10_1017_aer_2025_10048 crossref_primary_10_1038_s41598_025_02902_2 crossref_primary_10_3390_s22197654 crossref_primary_10_1016_j_ssci_2024_106755 crossref_primary_10_3390_drones6120397 crossref_primary_10_3390_asi7010011 crossref_primary_10_1007_s11760_023_02983_4 crossref_primary_10_3390_ma17184639 crossref_primary_10_3390_aerospace12050441 crossref_primary_10_1007_s42979_025_03856_y crossref_primary_10_1109_TIM_2025_3606070 crossref_primary_10_3390_technologies12090158 crossref_primary_10_1016_j_conengprac_2025_106491 crossref_primary_10_1007_s13042_024_02475_y crossref_primary_10_1016_j_gie_2022_08_013 crossref_primary_10_37434_tdnk2025_02_01 crossref_primary_10_37434_tpwj2025_07_05 |
| Cites_doi | 10.1117/12.259117 10.3390/s16122118 10.1109/MRA.2002.1160067 10.3390/s19081824 10.1109/CVPR.2009.5206848 10.1016/j.patcog.2016.07.001 10.1260/1369-4332.17.3.289 10.3390/s18103452 10.3390/app8091575 10.1155/2018/6357185 10.1117/1.JEI.24.6.061110 10.1111/mice.12334 10.1109/MetroAeroSpace.2017.7999594 10.1007/s12541-010-0075-3 10.36001/phmconf.2019.v11i1.776 10.1007/978-3-030-01424-7_27 10.1016/j.ifacol.2016.09.055 10.3390/robotics5030014 10.3390/app8091678 10.1109/MetroAeroSpace.2018.8453598 10.1111/mice.12375 |
| ContentType | Journal Article |
| Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
| Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
| DBID | AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.3390/s22134682 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Coronavirus Research Database ProQuest Central Korea Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals (ODIN) |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_ff39ff76f3e14deba83e64bdfad82075 PMC9269053 10_3390_s22134682 |
| GrantInformation_xml | – fundername: British Engineering and Physics Sciences Research Council |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. 7XB 8FK AZQEC COVID DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c446t-77a2083d74f0f08d02a06f050fce211aed2b0b242eede2da30ca5f5fde3faac3 |
| IEDL.DBID | PIMPY |
| ISICitedReferencesCount | 19 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000824001700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Tue Oct 14 19:07:53 EDT 2025 Tue Nov 04 01:58:08 EST 2025 Thu Oct 02 07:02:08 EDT 2025 Tue Oct 07 07:23:32 EDT 2025 Tue Nov 18 22:16:51 EST 2025 Sat Nov 29 07:10:45 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 13 |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c446t-77a2083d74f0f08d02a06f050fce211aed2b0b242eede2da30ca5f5fde3faac3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-1314-0603 0000-0002-3396-5744 0000-0002-3966-7633 |
| OpenAccessLink | https://www.proquest.com/publiccontent/docview/2686190228?pq-origsite=%requestingapplication% |
| PMID | 35808177 |
| PQID | 2686190228 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_ff39ff76f3e14deba83e64bdfad82075 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9269053 proquest_miscellaneous_2687716943 proquest_journals_2686190228 crossref_primary_10_3390_s22134682 crossref_citationtrail_10_3390_s22134682 |
| PublicationCentury | 2000 |
| PublicationDate | 20220621 |
| PublicationDateYYYYMMDD | 2022-06-21 |
| PublicationDate_xml | – month: 6 year: 2022 text: 20220621 day: 21 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationYear | 2022 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Mumtaz (ref_16) 2012; 6 Zhang (ref_24) 2018; 2018 ref_12 ref_11 ref_10 ref_32 ref_30 ref_19 Cha (ref_22) 2018; 33 ref_18 Larnier (ref_5) 2015; 24 ref_17 ref_15 Kang (ref_27) 2018; 33 Keiller (ref_31) 2017; 61 Morgenthal (ref_14) 2014; 17 Chu (ref_7) 2010; 11 Malandrakis (ref_13) 2016; 49 Gunatilake (ref_6) 1997; Volume 3029 ref_23 ref_21 ref_20 ref_1 Pedregosa (ref_33) 2011; 12 ref_3 ref_2 ref_29 Caicedo (ref_25) 2017; Volume 2 ref_28 Mukherjee (ref_9) 2002; 9 ref_26 ref_8 ref_4 |
| References_xml | – ident: ref_28 – ident: ref_4 doi: 10.1117/12.259117 – ident: ref_17 doi: 10.3390/s16122118 – ident: ref_32 – ident: ref_26 – volume: 9 start-page: 10 year: 2002 ident: ref_9 article-title: Climbing the walls [robots] publication-title: IEEE Robot. Autom. Mag. doi: 10.1109/MRA.2002.1160067 – ident: ref_18 doi: 10.3390/s19081824 – ident: ref_29 doi: 10.1109/CVPR.2009.5206848 – volume: 61 start-page: 539 year: 2017 ident: ref_31 article-title: Towards better exploiting convolutional neural networks for remote sensing scene classification publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2016.07.001 – volume: Volume 3029 start-page: 2 year: 1997 ident: ref_6 article-title: Image understanding algorithms for remote visual inspection of aircraft surfaces publication-title: Machine Vision Applications in Industrial Inspection V – volume: 17 start-page: 289 year: 2014 ident: ref_14 article-title: Quality Assessment of Unmanned Aerial Vehicle (UAV) Based Visual Inspection of Structures publication-title: Adv. Struct. Eng. doi: 10.1260/1369-4332.17.3.289 – ident: ref_23 doi: 10.3390/s18103452 – volume: Volume 2 start-page: 71 year: 2017 ident: ref_25 article-title: Vision-based concrete crack detection using a convolutional neural network publication-title: Dynamics of Civil Structures – ident: ref_21 doi: 10.3390/app8091575 – volume: 12 start-page: 2825 year: 2011 ident: ref_33 article-title: Scikit-learn: Machine Learning in Python publication-title: J. Mach. Learn. Res. – ident: ref_1 – volume: 6 start-page: 38 year: 2012 ident: ref_16 article-title: Computer aided visual inspection of aircraft surfaces publication-title: Int. J. Image Processing – volume: 2018 start-page: 6357185 year: 2018 ident: ref_24 article-title: Astronaut visual tracking of flying assistant robot in space station based on deep learning and probabilistic model publication-title: Int. J. Aerosp. Eng. doi: 10.1155/2018/6357185 – volume: 24 start-page: 61110 year: 2015 ident: ref_5 article-title: Automated exterior inspection of an aircraft with a pan-tilt-zoom camera mounted on a mobile robot publication-title: J. Electron. Imaging doi: 10.1117/1.JEI.24.6.061110 – volume: 33 start-page: 731 year: 2018 ident: ref_22 article-title: Autonomous structural visual inspection using region-based deep learning for detecting multiple damage types publication-title: Comput. Aided Civ. Infrastruct. Eng. doi: 10.1111/mice.12334 – ident: ref_12 doi: 10.1109/MetroAeroSpace.2017.7999594 – volume: 11 start-page: 633 year: 2010 ident: ref_7 article-title: A survey of climbing robots: Locomotion and adhesion publication-title: Int. J. Precis. Eng. Manuf. doi: 10.1007/s12541-010-0075-3 – ident: ref_3 doi: 10.36001/phmconf.2019.v11i1.776 – ident: ref_8 – ident: ref_2 – ident: ref_10 – ident: ref_30 doi: 10.1007/978-3-030-01424-7_27 – volume: 49 start-page: 320 year: 2016 ident: ref_13 article-title: Design and Development of a Novel Spherical UAV publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2016.09.055 – ident: ref_11 doi: 10.3390/robotics5030014 – ident: ref_20 – ident: ref_19 doi: 10.3390/app8091678 – ident: ref_15 doi: 10.1109/MetroAeroSpace.2018.8453598 – volume: 33 start-page: 885 year: 2018 ident: ref_27 article-title: Autonomous UAVs for structural health monitoring using deep learning and an ultrasonic beacon system with geo-tagging publication-title: Comput. Aided Civ. Infrastruct. Eng. doi: 10.1111/mice.12375 |
| SSID | ssj0023338 |
| Score | 2.480789 |
| Snippet | Aircraft maintenance plays a key role in the safety of air transport. One of its most significant procedures is the visual inspection of the aircraft skin for... |
| SourceID | doaj pubmedcentral proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 4682 |
| SubjectTerms | Accuracy Aircraft aircraft inspection Algorithms Automation Classification CNN Concrete Coronaviruses COVID-19 Datasets deep learning defect classification defect recognition Defects Disease transmission Human error Localization Machine learning Neural networks Sensors UAV |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals (ODIN) dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB5EPOhBfGK0ShQPXoLb3XQ3OdZH0UsRqcVb2Kct1FSa1t_vbJKWBgQvXrND2Mzs7syXnfkG4FozY7glMlJt46JYUBcpxXlk2jxB7CYIkaZsNiH6_eT9PX1Za_Xlc8IqeuBKcbfOMf9bkTtm27GxSibM8lgZJw06L1GylxKRLsFUDbUYIq-KR4ghqL8tqCcu4wlteJ-SpL8RWTbzItccTW8PdusIMexWM9uHDZsfwM4ab-AhPD7YMgsjfF2m_0zzsDv5mCLSH32Ga4lAoS8fCYfjYoGvfOsOw-e8qq3ExXYEg97j4P4pqvshRBpB2xwDYUkxYjIidsSRxBAqCXekQ5y2iOOkNVQRhT4X_Z6lRjKiZcd1nLHMSanZMWzm09yeQBh3qOJSUe00wqGUK-ppW4S1lMR43tEAbpZqynTNFe5bVkwyxAxeo9lKowFcrUS_KoKM34TuvK5XAp7TunyAls5qS2d_WTqA1tJSWb3RiozyBCGgJ_EJ4HI1jFvE33vI3E4XpYzwpEAxC0A0LNyYUHMkH49Ksu2U8hQPqtP_-IIz2Ka-eoLwiLZbsDmfLew5bOnv-biYXZQr-Aex__wY priority: 102 providerName: Directory of Open Access Journals |
| Title | Defects Recognition Algorithm Development from Visual UAV Inspections |
| URI | https://www.proquest.com/docview/2686190228 https://www.proquest.com/docview/2687716943 https://pubmed.ncbi.nlm.nih.gov/PMC9269053 https://doaj.org/article/ff39ff76f3e14deba83e64bdfad82075 |
| Volume | 22 |
| WOSCitedRecordID | wos000824001700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center) customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07b9swED40dod26Duo0tRQiw5dBNOkRMpT4CQOmiGGEaSBOwl8JgZSKbXsjP3tOUqyagFFpy4axANF6Hgv8u47gC-aGcMtkZEaGRfFgrpIKc4jM-Ipxm6CEGmqZhNiNksXi_G8KY8um7TKrU6sFHWN9uzztlEJD02h_Yn5kPIUPX-P3XJ0_yvyPaT8XWvTUGMP-h54i_SgPz-_mP9oAzCG8ViNLsQw1B-W1MOZ8ZR2bFIF3d_xN7vZkjvm5-zl_134K3jRuKHhpN43r-GJzd_A8x1wwrcwPbVVqkd4uc0xKvJwcneDs61vf4Y72Uahr1EJr5flBqf8PrkOz_O6gBN39Du4OptenXyLmqYLkcbIcI3etqTolhkRO-JIagiVhDuSEKctBovSGqqIQsOOxtVSIxnRMnGJM5Y5KTXbh15e5PY9hHFCFZeKaqcx5hpzRT02jLCWkhiVKg3g6_avZ7oBJPd9Me4yDEw8g7KWQQF8bknvaxSOvxEde9a1BB44u3pRrG6yRg4z55g_peaO2VFsrJIpszxWxkmDvpBIAjjccjFrpLnM_jAtgE_tMMqhv1yRuS02FY3wyEMxC0B0NkxnQd2RfHlbIXqPKR-jNjz498c_wDPqiy8Ij-joEHrr1cZ-hKf6Yb0sVwPYEwtRPdMB9I-ns_nloDphwOfF7-mgEYZHXWgbAg |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRJw4I0aKBAQSFyieu3ESQ4ILbRVV21XK7RU5RT52a7UJmWzC-JH8R8Z58VGQtx64BpbjhN_noc98w3AG8W05oaIQA61DcKY2kBKzgM95An6bjEhQlfFJuLJJDk9Tacb8KvNhXFhla1MrAS1LpQ7I9-hPEFb37G1fLj6FriqUe52tS2hUcPi0Pz8gS5b-X68i-v7ltL9vdmng6CpKhAodH2WaE4KinaHjkNLLEk0oYJwSyJilUFvSBhNJZGouVB7GKoFI0pENrLaMCuEYjjsDdgMEetkAJvT8fH0a-fhMXT4avoixlKyU1LHl8YT2lN6VW2AnkHbD8dc02_79_6zP3Mf7jaGtD-qkf8ANkz-EO6s0Ss-gr1dUwWr-J_bKKki90cXZzj55fmlvxYv5bssG_9kXq5wyC-jE3-c1ymouCcfw-w6PuMJDPIiN1vghxGVXEiqrEKvMeWSOnab2BhKQlQL1IN37bJmqqFUd5U9LjJ0rRwCsg4BHrzuul7VPCJ_6_TRYaPr4Ki_qwfF4ixrJElmLXPn7NwyMwy1kSJhhodSW6HRmosjD7ZbmGSNPCqzPxjx4FXXjJLEXQ-J3BSrqk_suJNC5kHcQ2RvQv2WfH5ecZKnlKcoz5_---Uv4dbB7PgoOxpPDp_BbepSSQgP6HAbBsvFyjyHm-r7cl4uXjQ7y4fsmhH7GzhzaV8 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFCF64FmEoYBBIHGxstm11_YBoZQkIiqKoqpUvVn7bCMVu80DxE_j3zHrF7GEuPXA1V75-e3MfLsz3wC8VUxrbogI5EDbIIypDaTkPNADniB3iwkRumw2Ec9mydlZOt-BX00tjEurbGxiaah1odwaeZ_yBGN9p9bSt3VaxHw0-Xh1HbgOUm6ntWmnUUHkyPz8gfRt9WE6wn_9jtLJ-OTT56DuMBAopEFrDC0FxRhEx6ElliSaUEG4JRGxyiAzEkZTSSR6MfQkhmrBiBKRjaw2zAqhGF72FuzGDDlPD3YPx7P5ccv2GJK_SsqIsZT0V9Rpp_GEdhxg2SegE9x2UzO3fN3k_n_8lR7AvTrA9ofVjHgIOyZ_BHtbsouPYTwyZRKLf9xkTxW5P7w8x4dfX3zzt_KofFd9458uVhu85NfhqT_Nq9JUnKv7cHITr_EEenmRm6fghxGVXEiqrEI2mXJJnepNbAwlIboL6sH75hdnqpZadx0_LjOkXA4NWYsGD960Q68qfZG_DTp0OGkHOEnw8kCxPM9qC5NZy9z6O7fMDEJtpEiY4aHUVmiM8uLIg4MGMlltp1bZH7x48Lo9jRbGbRuJ3BSbckzsNJVC5kHcQWfngbpn8sVFqVWeUp6inX_275u_gjsI0-zLdHb0HO5SV2FCeEAHB9BbLzfmBdxW39eL1fJlPcl8yG4YsL8Bjg1x-Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Defects+Recognition+Algorithm+Development+from+Visual+UAV+Inspections&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Avdelidis%2C+Nicolas+P&rft.au=Tsourdos%2C+Antonios&rft.au=Lafiosca%2C+Pasquale&rft.au=Plaster%2C+Richard&rft.date=2022-06-21&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=22&rft.issue=13&rft.spage=4682&rft_id=info:doi/10.3390%2Fs22134682&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |